Weaver & Popa CS 161

Spring 2019 Computer Security Project 1

Due: Febuary 12th, 2019, 11:59PM

Version 19.01.28.01

Preamble

In this project, you will be exploiting a series of vulnerable programs on a virtual machine.
In order to aid in immersion, this project has a story. It is not necessary to read the story
in order to do the problems.

I We use a shaded box to denote story which is not necessary for completing the project.

NOTE: You are only allowed to perform attacks against targets in your own virtual machine.
It is a violation of campus policy and the law when directing attacks against parties who do
not provide their informed consent!

Background Story

It is a time of rebellion. The evil empire of Caltopia oppresses its people with relentless
surveillance, and the emperor has recently unveiled his latest grim weapon: a supremely
powerful botnet, called Calnet, that aims to pervasively observe the citizenry and squash
their cherished Internet freedoms.

Yet in the enlightened city of Berkeley, a flicker of hope remains. The brilliant University
of Caltopia alumnus Neo, famed for not only his hacking skills but also the excellent
YouTube videos he produces illustrating his techniques, has infiltrated the empire’s
byzantine networks and hacked his way to the very heart of the Calnet source code
repository. As the emperor’s dark lieutenant, Lord Dirks of Leland Junior University,
attempts to hunt him down, Neo feverishly scours the Calnet source code hunting for
weaknesses. He’s in luck! He realizes that Lord Dirks enlisted ill-trained CS students
from Leland Junior University in writing Calnet, and unbeknownst to the empire, the
code is assuredly not memory-safe.

Alas, just as Neo begins to code up some righteous exploits to pwn Calnet’s components,
a barista at the coffeeshop where Neo gets his free WiFi betrays him to Lord Dirks, who
brutally deletes Neo’s YouTube account and swoops in with a SWAT team to make
an arrest. As the thugs smash through the coffeeshop’s doors, Neo gets off one final

Page 1 of 13

tweet for help. Such are his hacking skillz that he crams a veritable boatload of key
information into his final 280 characters, exhorting the National Berkeley University’s
virtuous computer security students to carry forth the flame of knowledge, seize control
of Calnet, and let freedom ring once more throughout Caltopia ...

Getting Started

Neo expects your team to develop exploits for 5 vulnerabilities in Calnet’s components.
As they topple you will move closer and closer towards pwning the nefarious botnet.
All you have to go by are your wits, your grit, and Neo’s legacy: guidelines on how to
proceed, and, most precious, a virtual machine (VM) image that contains code samples
from the main Calnet components.

You can work in teams of 1 or 2 students. To begin the project, you will need to set up
a virtual machine. There are two methods to do so-both methods require an instructional
account.

Recommended Setup: “NO FUSS”

This setup requires very little work on your part. It works out-of-the-box on many configu-
rations: most Linux systems, default macOS, Windows Linux Subsystem, Git Bash, and so
on. To start the VM, execute the following commands in your terminal:!

$ u=XXX # replace XXX with last three letters of instructional account
$ ssh -t cs161-$uChive$ ((36#${u:23}%26+1)).cs.berkeley.edu \"csl161/projl/start

Normally you are done with the virtual machine, you can simply close the terminal window.
Some events might cause the VM to become unaccessible. In this case you can force close
the VM by running the following commands on your local computer:

$ u=XXX # replace XXX with last three letters of instructional account
$ ssh -t cs161-$uChived ((36#${u:2}%26+1)) .cs.berkeley.edu \“cs1l61/projl/stop

That’s it! If this works for you, skip the “fussy” version below and go directly to “Configuring
your VM”.

!This command simply SSHes you into one of the hive machines (determined by the last letter of your
login), and then starts the program ~cs161/projl/start. If it does not work, feel free to SSH into any of
the hive machines and run the command manually.

Project 1 Page 2 of 13 CS 161 — Spring 2019

https://acropolis.cs.berkeley.edu/~account/webacct/
https://acropolis.cs.berkeley.edu/~account/webacct/

Alternate Setup: “Fussy”

There is also the old style setup method, for people who prefer to run things locally. You are
also able to run and investigate the VM on your own computer. You will need the following
installed on your computer:

1. VirtualBox
2. A text editor
3. An SSH client (on Windows, use Putty or Git Bash)

On Linux and Mac, you can install these programs from your package manager (e.g., apt or
brew). Open VirtualBox, and download and import the VM image (pwnable-sp19.ova) via
File -> Import Applicance.

Make sure your network is configured correctly by clicking your VM’s settings. Under
Network -> Adapter 1, make sure the first NAT adapter is enabled and open the advanced
settings.

pwnable_1 - Network

@I@l@i@@ﬁ =

General System Display Storage Audio Ports Shared Folders User Interface

Adapter 2 Adapter 3 Adapter 4

Enable Network Adapter

Attached to: | NAT 2]
Name: E
% Advanced
Adapter Type: Intel PRO/1000 MT Desktop (82540EM) a
Promiscuous Mode: Deny =
MAC Address: 080027B03F5F ® |
Cable Connected

Port Forwarding

? Cancel ﬁ

Click the Port Forwarding button and ensure that you have a rule to forward port 22, for
SSHing to the machine, to port 16161 on your host. (The image below shows that port 2222
is being forwarded. Make sure that yours shows port 16161.)

Project 1 Page 3 of 13 CS 161 — Spring 2019

https://www.virtualbox.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://git-scm.com/download/win
https://drive.google.com/drive/folders/1iV78tSViskCGWVM5zTx_LHof41ynqX74

ssh

Name

Protocol
| TCP

Host IP Host Port
2222

Guest IP

Guest Port |

22

Cancel

You can now start the VM, in which you will run the vulnerable programs and their exploits.

Project 1

Page 4 of 13

CS 161 — Spring 2019

Customizing

Regardless of which setup you use, you will need to customize the virtual machine. If you
don’t have aninstructional account for this class, you will need to get one first. To do so,
follow the instructions given here.

Log in as the user customizer with the password customizer (same username and pass-
word), and follow the prompts. Note that customization requires your partner’s login.
Both you and your partner should customize the VM using the same logins (the order of the
logins does not matter).

If you want to do some initial exploration by yourself before you’'ve finalized your team, you
can start off using just your class account for this customization step. Once you have your
team in place, you'll need to start again with a clean VM image customized as mentioned
here. Any exploits you've developed for your private VM image will require porting (re-
determination of the addresses to use in them). This should go quickly once you understand
the exploit in the first place.

If the logins used by the VM are incorrect, you and your partner may fail the autograder
tests. Make sure that you include your EXACT login.

Once you have finished customizing your virtual machine, you will receive the username and
password for the first stage.

Project 1 Page 5 of 13 CS 161 — Spring 2019

https://acropolis.cs.berkeley.edu/~account/webacct/

An Important Note on Execution Environments

Exploit development can lead to serious headaches if you don’t adequately account for fac-
tors that introduce non-determinism into the debugging process. In particular, the stack
addresses in the debugger may not match the addresses during normal execution. This ar-
tifact occurs because the operating system loader places both environment variables and
program arguments before the beginning of the stack:

Kernel

0xc0000000

. environment vars
variable

size

program arguments

Oxbffff?7??
Stack

Already installed in the VM you’ll find a small helper utility, invoke, that makes sure
environment and arguments remain at the same location, regardless of whether using the
debugger or not. For example, instead of invoking the program foo directly via ./foo, you
should instead use invoke foo:

$./foo argl arg? # invocation dependent on environment state :-(
$ invoke foo argl arg?2 # deterministic invocation

$ invoke -d foo argl arg2 # deterministic invocation in gdb

$./exploit # deterministic invocation, handled by exploit

You may find it useful to pass an extra environment variable to the program. The -e switch
serves that purpose:

$ invoke -e Y foo argl # sets environment vartable ENV=Y in foo

You must always use invoke or exploit to launch (or debug via invoke -d) the
provided executables because invoke additionally parameterizes the execution
environment based on the ID you entered during the first boot. More broadly,
since our grading tool uses the exact same VM that you downloaded, do not
perform any system modifications, only add/upload new content. (For example,
do not attempt to recompile the given executables.) This way you ensure that your solutions
will work with our grading tool and you do not run the risk of losing unnecessary points.

Project 1 Page 6 of 13 CS 161 — Spring 2019

The Task

Neo’s intelligence sources revealed that, once broken in the system, the required login
credentials necessary for further access are located inside the system itself. Escalate
your privileges in the machine by reading the credentials for each part, and then logging
into the accounts with more and more authority to carry out your attack.

You know from having watched his YouTube channel that Neo advocates a three-step
approach for breaking into a system:

Reconnaissance. Investigate what software/which services is/are running. Determine
if there is anything you can access. What can you discover about the software? Using
this information you can seek out potential vulnerabilities.

Development. After you have found a vulnerability, you can create an exploit using
the found bugs (generally, as an attacker, this means crafting a malicious input to the

buggy program).
Profit.

Use Neo’s three-step plan to solve the following problems.

No Fuss Setup. Enter the username (vsftpd) and password you received in the cus-
tomization step above.

Fussy Setup. Begin the project by SSHing into localhost, using the username and pass-
word you received in the customization step above. Since we use a rule to forward to port
16161, use the command ssh -p 16161 vsftpd@127.0.0.1, where vsftpd is the username
you obtained in the customization step above.

For each step, look at the exploit script to determine which executables you need to create
(e.g. egg in question 1). Before invoking exploit, make sure that your executables have the
execute permission set — this can be done using chmod +x filename. For each step, you can
confirm that your solution works by running exploit, which should launch a shell waiting
for input, and then typing commands like whoami and looking for the expected output, the
username for the following problem, in this case. Once you have a working exploit, the
README file will let you see the username and password for the next stage. You can view it
via a command like cat README.

Project 1 Page 7 of 13 CS 161 — Spring 2019

Question 1 Behind the Scenes (10 points)
A tweet from Neo assures you that given its hasty development by poorly educated
programmers, Calnet’s components contain a number of memory-safety vulnerabilities.
In the VM that Neo provided, you will find the first code piece located in the directory
/home/vsftpd.?

You are to continue his work and write an exploit that spawns a shell, for which you can
use the following shellcode:

shellcode =
"\x6a\x31\x58\xcd\x80\x89\xc3\x89\xc1\x6a" +
"\x46\x58\xcd\x80\x31\xc0\x50\x68\x2f \x2f" +
"\x73\x68\x68\x2f\x62\x69\x6e\x54\x5b\x50" +
"\x53\x89\xe1\x31\xd2\xb0\x0b\xcd\x80"

Shellcode is x86 machine code which performs some action-typically spawning a shell
for further attacker interaction. Recall that x86 has little-endian byte order, e.g., the
first four bytes of the above shellcode will appear as 0xcd58316a in the debugger.

Neo already provided an exploit scaffold that takes your malicious buffer and feeds it to
the vulnerable program via a script called exploit. To test whether the exploit worked,
try running a command such as 1s or whoami. To exit the shell, type Ctrl-D.

To get started, review the material from the lectures and Discussion 1. Neo recommended
that you try to absorb the high-level concepts of exploiting stack overflows rather than
every single line of assembly.

Once you have a shell running with the privileges of user smith, run the command
cat README to learn smith’s password for the next problem.

Submission and Grading. We highly recommend that you test your submission
against our autograder, in order to debug potential issues before the project deadline.
To do so, see the section “Submission Summary” near the end.

You must also submit a write up for this question in explanation.pdf that includes a
description of the vulnerability, how it could be exploited, how you determined which
address to jump to, and a detailed explanation of your solution. This includes GDB out-
put that very clearly demonstrates the effects of your exploit (before/after) (5 points).
Please keep your writeups to no more than a page, excluding GDB outputs and diagrams.

2The vulnerable binary has the setuid bit set and is owned by the user of the next stage, meaning it will
run with the effective privileges of user smith.

Project 1 Page 8 of 13 CS 161 — Spring 2019

http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Setuid

Question 2 Compromising Further (15 points)
No Fuss Setup. Press Ctrl-D (or use the command logout) until you are back at the
login prompt. Use the username and password you learned in the previous question.

Fussy Setup. SSH into the VM again, using the username smith and the password you
learned in the previous question (the command to run is ssh -p 16161 smith@127.0.0.1).

Calnet uses a sequence of stages to protect intruders from gaining root access. The
inept Leland Junior University programmers actually attempted a half-hearted fix
to address the overt buffer overflow vulnerability from the previous stage. In this
problem you must bypass these mediocre security measures and, again, inject code
that spawns a shell.

In the home directory of this stage, /home/smith, you will find a small helper script
generate-file-contents. This script takes arbitrary input via stdin and prints the
first 127 bytes to stdout in the format that the program agent-smith expects (which is
an initial byte specifying the length of the input, followed by the input itself):

Example invocation:
$./generate-file-contents < anderson.txt

Neo realized that this helper script always generates safe files to be used with the buggy
agent-smith program—but nothing prevents you from instead feeding agent-smith an
arbitrary file of your choice. In particular, Neo started a script exploit representing an
initial exploit attempt.

Submission and Grading. As in the previous question, you will submit a script egg,
written in your favorite scripting language, that integrates with the above displayed
script exploit. Your script should inject shellcode to spawn a shell. Make sure it works
by running ./exploit. Our grading tool will log into a clean VM image as user smith
and put your submission into the directory /home/smith. A script will then invoke
exploit and check for the existence of a shell prompt with effective privileges of user
brown (10 points).

You must also submit a write up for this question in explanation.pdf, that includes
the same type of information as the sample writeup for Question 1 on Gradescope. (5
points)

Project 1 Page 9 of 13 CS 161 — Spring 2019

Question 3 Deep Infiltration (35 points)
Calnet is a pernicious and invasive piece of malcode. But Lord Dirks undertook all of
his own studies at Leland Junior University, and as such he never really learned how to
count without occasionally screwing it up.

Find the subtle vulnerability in this code, and inject code that spawns a shell. Neo,
again on top of it, started a scaffold called exploit that you should use.

To solve this problem, you might benefit from reading Section 10 of “ASLR Smack &
Laugh Reference” by Tilo Miiller [1]. (Although the title suggests that you have to deal
with ASLR, you can ignore any ASLR-related content in the paper for this question.)

Submission and Grading. For this question, you will submit a script arg and a
script egg written in your favorite scripting language. Your code should integrate with
the script exploit as shown above. Make sure your scripts work by running . /exploit.
Our grading tool will log into a clean VM image as user brown and put your submission
into the directory /home/brown. A script will then invoke exploit and check for the
existence of a shell prompt with effective privileges of user jz (20 points).

You must also submit a write up for this question in explanation.pdf that includes a
description of the vulnerability, how it could be exploited, how you determined which ad-
dress to jump to, and a detailed explanation of your solution. This includes GDB output
that very clearly demonstrates the effects of your exploit (before/after) (15 points).
Please keep your writeups to no more than a page, excluding GDB outputs and diagrams.

Project 1 Page 10 of 13 CS 161 — Spring 2019

Question 4 Secret Ezfiltration (25 points)
Lord Dirks has learned from your previous exploits that buffer overflows are bad news.
Rather than rewrite his code to fix this issue, Lord Dirks decides to enable stack canaries
as a fool-proof solution. The agent-jz program takes in any number of lines, and
converts them so that their hexadecimal escapes are decoded into the corresponding
ASCII characters. Any non-hexadecimal escapes are outputted as-is. For example:

$./agent-jz
\x41\x42 # outputs AB
XYZ # outputs XYZ

Control-D ends input

Neo has helped you by creating three files: interact, exploit and scaffold.py. Your
work will go in the interact script — do not modify the other files as they will not be
graded. The exploit script simply runs your interact script three times in a row.
(This is helpful, since your solution might have a small chance of failure.) Finally, the
scaffold.py script contains functions which will help you to interact with the output
of the program. In particular, you have access to the following:

1. SHELLCODE: the shellcode that you should execute. Rather than opening a shell, it
prints the README file, which contains the password.

2. p.send(s): sends a string s to the program. Be sure to send a newline \n at
the end of each line of your input.

3. p.recv(num_bytes): reads the given number of bytes from the program’s output.
As an example, we can write the session from before using this API.

Note the newlines!
p-send ('\\x41\\x42' + '\n') # p.recv(3) == 'BC\n'
p-send('XYZ' + '\n') # p.recv(4) == 'XYZ\n'

Note that this question is particularly difficult to debug. Neo suggests that you begin
with exploring the problem using gdb and a pen-and-paper, rather than trying to start
by writing the interact script.

Submission and Grading. For this question, you will submit the Python script
interact. Do not edit any of the other files as they will not be graded. It is OK if your
exploit does not work 100% of the time, although reasonable solutions should work at
least 90% of the time. Our grading tool will log into a clean VM image as user jz and
then put your submission into the directory /home/jz. A script will then run exploit
and check that your submission correctly reads the README file. (15 points)

As in the previous questions, you must also submit a write up for this question in
explanation.pdf. Please include a brief description of all vulnerabilities, how they can
be exploited, how you determined what addresses to jump to, how you determined what
characters to input, and a detailed explanation of your solution. (10 points)

Project 1 Page 11 of 13 CS 161 — Spring 2019

Question 5 The Last Bastion (25 points)
This part of the project enables ASLR. Once you have started this part of the
project ASLR will stay enabled on your VM, you’ll need to restart your VM
if you’d like to go back to the previous parts.

Yo, Berkeley! Your mission, should you choose to accept it, is to bypass the ASLR
protection and spawn a shell with root privileges. Full control of the box ... and
thus Calnet itself awaits you! Neo didn’t dare hope you might hack your way this
far and this deeply ... but he could never abandon his dream of freedom.

You should consider reading Section 8 of “ASLR Smack & Laugh Reference” by Tilo
Miiller [1]. Neo has also noted that even though ASLR is enabled, position-independent
executables were not enabled. Therefore, the .text segment of the binary is always at
the same spot.

One detail Neo could figure out for you is that the service to exploit listens locally on
TCP port 942. It turns out that the operating system watches the service and restarts
it shortly when it crashes. You have to send the malicious shellcode to that service to
successfully complete this task. To perform the exploit, run exploit. If you succeed in
the exploit, you should see the output root on shell command whoami.

Linux (x86) TCP shell binding to port 11111.

bind_shell =
"\xe8\xff\xff\xff\xff\xc3\x5d\x8d\x6d\x4a\x31\xc0\x99\x6a" +
"\x01\x5b\x52\x53\x6a\x02\xff\xd5\x96\x5b\x52\x66\x68\x2b\x67"
"\x66\x53\x89\xe1\x6a\x10\x51\x56\xff\xd5\x43\x43\x52\x56\xff"
"\xd5\x43\x52\x52\x56\xff\xd5\x93\x59\xb0\x3f \xcd\x80\x49\x79"
"\xf9\xb0\x0b\x52\x68\x2f \x2f \x73\x68\x68\x2f \x62\x69\x6e\x89"
"\xe3\x52\x53\xeb\x04\x5f\x6a\x66\x58\x89\xe1\xcd\x80\x57\xc3"

+ + + +

This should finally suffice to pull off the Final Stage!

The freedom of cybercitizens throughout Caltopia rests in your hands . ..

Submission and Grading. For this question question, you will submit a script egg,
written in your favorite scripting language, that prints the exploit buffer to standard
output. Make sure your scripts work by running ./exploit. Our grading tool will
log into a clean VM image as user jones and put your submission into the directory
/home/jones. A script will then invoke exploit and check for the existence of a shell
prompt with effective privileges of user root (15 points).

You must also submit a write up for this question in explanation.pdf in the same
fashion as for Questions 1-3 (10 points).

Project 1 Page 12 of 13 CS 161 — Spring 2019

Question 6 Feedback (optional) (0 points)
If you wish, you may submit feedback at the end of explanation.pdf, with any feedback
you may have about this project. What was the hardest part of this project in terms of
understanding? In terms of effort? (We also, as always, welcome feedback about other
aspects of the class.) Your comments will not in any way affect your grade.

Submission Summary

You will need to move your files off the VM and submit them to the “Project 1 Autograder”
assignment on Gradescope. The method to do this depends on how you set up your VM:

No Fuss Setup. Run the following commands in your local computer’s terminal:

$ u=XXX # replace XXX with last three letters of instructional account
$ ssh cs161-$uBhive$ ((36#${u:2}%,26+1)) .cs.berkeley.edu \
\"cs161/projl/make-submission > projl-subm.zip

This creates a file projl-subm.zip in the current directory, which you can submit to Grade-
scope as-is.

Fussy Setup. Using scp, create the following directory tree:

customizer/.customization
vsftpd/egg

smith/egg

brown/arg

brown/egg

jz/interact

jones/egg

You should not copy and paste your exploits from the VM onto your computer, since this
might insert weird characters which will cause you to fail our autograder.

Submit your writeup explanation.pdf to the assignment “Project 1 Writeup”.

Referenoes

[1] Tilo Miiller. ASLR Smack & Laugh Reference. http://www.icir.org/matthias/
cs161-spl13/aslr-bypass.pdf, February 2008.

Project 1 Page 13 of 13 CS 161 — Spring 2019

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

