
CS 164, Spring 2019 CS 164: Homework #6 P. N. Hilfinger

Due: Fri, 26 April 2018

1. I produced the following program using gcc -S foo.c for the RISC-V architecture:

f:

addi sp,sp,-48

sw s0,44(sp)

addi s0,sp,48

sw a0,-36(s0)

sw a1,-40(s0)

sw zero,-20(s0)

sw zero,-24(s0)

j .L2

.L3:

lw a5,-24(s0)

slli a5,a5,2

lw a4,-36(s0)

add a5,a4,a5

lw a5,0(a5)

lw a4,-20(s0)

add a5,a4,a5

sw a5,-20(s0)

lw a5,-24(s0)

addi a5,a5,1

sw a5,-24(s0)

.L2:

lw a4,-24(s0)

lw a5,-40(s0)

blt a4,a5,.L3

lw a5,-20(s0)

mv a0,a5

lw s0,44(sp)

addi sp,sp,48

jr ra

Produce a plausible definition (in C) of function f, one that might have produced this
output. The function does return a value.

1



Homework #6 2

2. In lecture, we talked about array descriptors, which are data structures containing
all the information one needs to access (get the address of) an array element A[i,j] in an
implementation that allocates all elements of a new array contiguously. In C, multidimen-
sional arrays are composed of rows of rows, so that A[i,j] (or A[i][j] in C) is located
at address(A0,0) + N · S · i + S · j, where the array in A is M × N and each element has
size S. Thus, the three constants data address(A0,0) (the virtual origin), N · S (the row
stride), and S (the column stride) can be precomputed into an array descriptor, which
the program can use to generate array accesses and can pass as a parameter to functions
that expect to receive the array as a by-reference parameter. Show the RISC V code that
you’d use to access array element A[i][j], assuming that the d, ti, and tj are registers
containing the address of the array descriptor for A, the value of i, and the value of j,
respectively.

3. By constructing appropriate array descriptors, one can give different views of an array.
Describe how to compute the constructors to create the following views (we don’t need the
actual code, just the calculations it must do).

a. Suppose that a certain array descriptor contains the information (VO, S1, S2) for
accessing two-dimensional array B. Show how to create a new array descriptor that
accesses column number j of B. This will be a one-dimensional array descriptor (hav-
ing only one stride).

b. Show how to create a new array descriptor that accesses the transpose of B.

c. Show how to create a new array descriptor (for array view B’) that accesses the rows
and columns of B in reverse, so that B’[0,0] is the same as the last column of the
last row of B.


