
CS164 Programming Languages and Compilers Spring 2019

Programming Assignment 1

Assigned: February 11, 2019 Due: March 6, 2019 at 11:59pm

1 Overview

The three programming assignments in this course will direct you to develop a compiler for
ChocoPy, a statically typed dialect of Python. The assignments will cover (1) lexing and pars-
ing of ChocoPy into an abstract syntax tree (AST), (2) semantic analysis of the AST, and (3) code
generation.

For this assignment, you are to build a front-end for ChocoPy in Java that consists of a scanner,
which performs lexical analysis, and a parser, which performs syntax analysis. Instead of building
these components from scratch by hand, you will be using two tools: JFlex, a scanner generator,
and CUP, a parser generator. JFlex is a tool that converts a specification of lexical analysis,
written in a specific format, into a Java class ChocoPyLexer. The ChocoPyLexer class processes an
input string and produces a sequence of tokens. The CUP tool converts a specification of a program
grammar into a Java class ChocoPyParser. The ChocoPyParser class performs syntax analysis
on the sequence of tokens produced by ChocoPyLexer and executes user-specified actions while
parsing. These actions contain code to build an AST.

2 Getting started

We are going to use the Github Classroom platform for managing programming assignments and
submissions.

• Visit https://classroom.github.com/g/MhQFbBEg for the assignment. You will need a GitHub
account to join.

• The first team member accepting the assignment should create a new team with some reasonable
team name. The second team member can then find the team in the list of open teams and join
it when accepting the assignment. A private GitHub repository will be created for your team.
It should be of the form https://github.com/cs164fall2019/pa1-chocopy-parser-<team>

where <team> is the name of your team.

• Ensure you have Git, Apache Maven and JDK 8+ installed. See Section 3 for more information
regarding software.

• Run

git clone git@github.com:cs164spring2019/pa1-chocopy-parser-<team>.git

where <team> is the name of your team, to clone the repository. It will contain all the files
required for the assignment. Your repository must be private.

1

• Run mvn clean package. This will compile the starter code, which parses a tiny subset of
ChocoPy. Your goal is to develop a parser that conforms to the grammar listed in the ChocoPy
language manual completely and produces output as described in this document.

• Run the following command (on a single line) to test the generated parser against sample inputs
and expected outputs—only one test will pass with the starter code:

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=s --dir

src/test/data/pa1/sample --test

Windows users should replace the colon between the JAR names in the classpath with a semi-
colon: java -cp "chocopy-ref.jar:target/assignment.jar" This applies to all java
commands listed in this document.

3 Software dependencies

The software required for this assignment is as follows:

• Git, version 2.5 or newer: https://git-scm.com/downloads

• Java Development Kit (JDK), version 8 or newer: http://www.oracle.com/technetwork/

java/javase/downloads/index.html

• Apache Maven, version 3.3.9 or newer: https://maven.apache.org/download.cgi

• (optional) An IDE such as IntelliJ IDEA (free community editor or ultimate edition for students):
https://www.jetbrains.com/idea.

• (optional) Python, version 3.6 or newer, for running ChocoPy programs in a Python interpreter:
https://www.python.org/downloads

If you are using Linux or MacOS, we recommend using a package manager such as apt or
homebrew. Otherwise, you can simply download and install the software from the websites listed
above. We also recommend using an IDE to develop and debug your code. In IntelliJ, you should
be able to import the repository as a Maven project.

4 External Documentation

There are also links to the following resources on the class home page.

• JFlex user’s manual: http://jflex.de/manual.html

• CUP user’s manual: http://www2.cs.tum.edu/projects/cup/docs.php

• Chocopy refererence manual: http://inst.eecs.berkeley.edu/~cs164/sp19/chocopy_

language_reference.pdf

2

5 Files and directories

The assignment repository contains a number of files that provide a skeleton for the project. Some
of these files should not be modified, as they are essential for the assignment to compile correctly.
Other files must be modified in order to complete the assignment. You may also have to create
some new files in this directory structure. The list below summarizes each file or directory in the
provided skeleton.

• pom.xml: The Apache Maven build configuration. You do not need to modify this as it is set
up to compile the entire pipeline.

• src/: The src directory contains manually editable source files, some of which you must modify
for this assignment.

– src/main/jflex/chocopy/pa1/ChocoPy.jflex: This file contains the specifications for
the JFlex scanner generator tool. You will need to modify this file to write specifications
for tokenizing programs written in ChocoPy.

– src/main/cup/chocopy/pa1/ChocoPy.cup: This file contains the grammar for the CUP
parser generator tool. You will need to modify this file to specify the syntax of ChocoPy
and the actions to be executed while parsing an input.

– src/test/data/pa1: This directory contains ChocoPy programs for testing your parser.

∗ /sample/*.py - Sample test programs covering a variety of features of the ChocoPy
language that you need to implement in this assignment.

∗ /student contributed/good.py - A test program that parses successfully. You have
to modify this file to test various features of your parser.

∗ /student contributed/bad.py - A test program that does not parse. You have to
modify this file to test various types of syntax errors and error recovery.

• target/: The target directory will be created and populated after running mvn clean

package. It contains automatically generated files that you should not modify by hand. This
directory will be deleted before your submission.

– target/generated-sources/jflex/chocopy/pa1/ChocoPyLexer.java: Generated by
JFlex, this file will contain the DFAs constructed from the lexical specifications along
with any Java code provided as actions. DO NOT MODIFY THE GENERATED FILE
BY HAND. However, you may want to inspect this file for compilation errors. In case any
of the generated code leads to compilation errors, you should fix the ChocoPy.jflex file
instead. This file may reference tokens defined in ChocoPyTokens.java, which means you
should run mvn clean package every time you add or modify a terminal declaration in
ChocoPy.cup.

– target/generated-sources/cup/chocopy/pa1/ChocoPyTokens.java: This file is gener-
ated by CUP. This file simply contains a list of token identifiers generated from the terminals
declared in ChocoPy.cup. These symbols are used both in the lexer and in the parser. DO
NOT MODIFY THE GENERATED FILE BY HAND. It is overwritten every time CUP
is executed.

3

– cup/chocopy/ChocoPyParser.java: This file is the main parser generated by CUP. It
will contain the LALR parsing tables as well as any action code that you specify in the
ChocoPy.cup file. DO NOT MODIFY THE GENERATED FILE BY HAND. If you notice
any compilation errors in this file, you probably need to fix the action code embedded in
ChocoPy.cup.

– target/assignment.jar: This is where your compiled parser will be packaged.

• chocopy-ref.jar: A reference implementation of the parser, provided by the instructors.

• README.md: You will have to modify this file with a writeup.

6 Assignment goals

The objective of this assignment is to build a front-end for ChocoPy that parses an input ChocoPy
program and produces an abstract syntax tree (AST) in JSON format. For a single input file, the
parser is invoked by running the following command (on a single line):

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=s <input file>

where <input file> is a placeholder for the path to a ChocoPy program file.

6.1 Expected output

The parser should output the AST of the program in a JSON format, which is described in the
rest of this section.

6.1.1 JSON format

JSON is a notation for representing a tree of objects. A JSON object is a set of key-value pairs
called properties, represented using curly braces:

{ <key1>: <value1>, <key2>: <value2>, ... }.

For example,

{"product" : "iPad Pro", "company": "Apple", "year": 2016, "released": true}.

Keys are always strings delimited by double quotes; the values can be strings, integers, booleans
(true/false), the value null, other JSON objects, or JSON arrays. Arrays are represented as a
list of values delimited by square brackets: [<value1>, <value2>, ...]. You can find a complete
specification for JSON at https://json.org.

In our AST representation, we denote each AST node using a JSON object. Such a JSON
object has a particular kind which specifies what keys the object must contain and what types
the corresponding values will take. For example, the Identifier kind specifies one property,
with a key called name, whose value must be a string corresponding to the name of the identifier.
Similarly, the UnaryExpr kind specifies two properties: a string-valued operator, and a property
with key operand whose value is of kind Expr. Kinds can extend other kinds, by including the
properties specified by the extended kind as a subset of their own properties. Both Identifier

and UnaryExpr extend kind Expr, and therefore JSON objects of these kinds may appear as values
whenever an object of kind Expr is expected. All kinds in our AST directly or indirectly extend

4

the Node kind which specifies two properties: (1) a string-valued property called kind that simply
contains the kind of the node and (2) location, an array of integers. The following is a sample
JSON representation of the AST corresponding to the unary expression (-foo):

{

"kind": "UnaryExpr",

"operator": "-",

"operand": {

"kind": "Identifier",

"name": "foo",

"location" : [1, 3, 1, 5]

},

"location" : [1, 2, 1, 5]

}

The location array always contains four integers and describes source code location informa-
tion for the corresponding AST node: (1) the line number of the first character, (2) the column
number of the first character, (3) the line number of the last character, and (4) the column number
of the last character.

6.1.2 AST node kinds

For this assignment, we list the set of all kinds required to serialize ASTs in Figure 1. We use
the syntax kind K {...} to define a kind and kind K extends S {...} to define a kind K that
extends kind S. Properties are defined as <k>:<v> where <k> is the name of the key and <v> is the
type of the value. Value types are one of string, int, bool, a JSON object of kind K, or a JSON
array of type t represented as [t]. Properties that may contain null values are suffixed with a
question mark.

When provided with a ChocoPy program, the output of the parser should be a JSON ob-
ject of kind Program. Most AST node kinds correspond directly to production rules in the
grammar. A notable exception is the IfStmt kind, which only contains one elseBody even
though the grammar allows a sequence of elif statements. The if-elif-else form is syntac-
tic sugar; the parser de-sugars elifs as an elseBody with exactly one IfStmt in its body. Refer
to chocopy language reference.pdf for an example of this equivalence.

The file src/test/data/pa1/sample/coverage.py contains a sample ChocoPy program that
covers almost all syntax rules and AST node kinds; the corresponding AST JSON can be found
in src/test/data/pa1/sample/coverage.py.ast. You can also run any input ChocoPy pro-
gram through the provided reference implementation of the parser, which should produce the
JSON-formatted AST that you need to produce. To parse an input program using the reference
implementation, run the command (on a single line):

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=r <input file>

We have tried to make the reference compiler adhere to the specification of the ChocoPy language
and to this project specification. However, we’re not perfect. Do let us know of any any ambiguities
or discrepancies, but for the most part the output of the reference implementation will be the
expected behavior of your parser.

5

kind Node {

kind: string,

location: [int]

}

kind Program extends Node {

declarations: [Declaration],

statements: [Stmt]

}

kind Declaration extends Node { }

kind ClassDef extends Declaration {

name: Identifier,

superClass: Identifier,

declarations: [Declaration]

}

kind FuncDef extends Declaration {

name: Identifier,

params: [TypedVar],

returnType: TypeAnnotation,

declarations: [Declaration],

statements: [Stmt]

}

kind VarDef extends Declaration {

var: TypedVar,

value: Literal

}

kind GlobalDecl

extends Declaration {

variable: Identifier

}

kind NonlocalDecl

extends Declaration {

variable: Identifier

}

kind TypedVar extends Node {

identifier: Identifier,

type: TypeAnnotation

}

kind TypeAnnotation

extends Node { }

kind ClassType

extends TypeAnnotation {

className: string

}

kind ListType

extends TypeAnnotation {

elementType: TypeAnnotation

}

kind Stmt extends Node { }

kind ExprStmt extends Stmt {

expr: Expr

}

kind ReturnStmt extends Stmt {

value: Expr?

}

kind AssignStmt extends Stmt {

targets: [Expr],

value: Expr

}

kind IfStmt extends Stmt {

condition: Expr,

thenBody: [Stmt],

elseBody: [Stmt]

}

kind WhileStmt extends Stmt {

condition: Expr,

body: [Stmt]

}

kind ForStmt extends Stmt {

identifier: Identifier,

iterable: Expr,

body: [Stmt]

}

kind Expr extends Node { }

kind Identifier extends Expr {

name: string

}

kind BinaryExpr extends Expr {

left: Expr,

operator: string,

right: Expr

}

kind UnaryExpr extends Expr {

operator: string,

operand: Expr

}

kind IfExpr extends Expr {

condition: Expr,

thenExpr: Expr,

elseExpr: Expr

}

kind CallExpr extends Expr {

function: Identifier,

args: [Expr]

}

kind MethodCallExpr extends Expr {

method: MemberExpr,

args: [Expr]

}

kind IndexExpr extends Expr {

list: Expr,

index: Expr

}

kind MemberExpr extends Expr {

object: Expr,

member: Identifier

}

kind ListExpr extends Expr {

elements: [Expr]

}

kind Literal extends Expr { }

kind NoneLiteral extends Literal { }

kind StringLiteral extends Literal {

value: string

}

kind IntegerLiteral extends Literal {

value: int

}

kind BooleanLiteral extends Literal {

value: bool

}

kind Errors extends Node {

errors: [CompilerError]

}

kind CompilerError extends Node {

message: string

}

Figure 1: Kinds of JSON objects corresponding to AST nodes

6

6.2 Error handling

Your lexer should not report errors for any reason. Whenever a token is unrecognized, your lexer
should emit the dummy token UNRECOGNIZED. Your parser should not use this token in any gram-
mar rule, thereby leading to a syntax error. You may introduce other dummy tokens for specific
purposes, if you desire.

Your parser should be able to recover from simple errors and continue parsing. You can use the
predefined error nonterminal (refer to the CUP manual) to recover from syntax errors. In partic-
ular, your parser should be able to (1) recover from errors within a statement and continue parsing
following statements, (2) recover from errors parsing a variable declaration, function definition, or
class definition and continue parsing the rest of the declarations and statements.

The Program object produced by the parser conains a JSON object of kind Errors, which
contains a list CompilerError objects, each having a message and the location of an erronenous
construct in the source code. For a correct program, the Errors object will contain an empty list
of CompilerError objects. Syntax errors should contain messages of the form Parse error near

token <TOKEN>: <text>, where <TOKEN> is the name of the lexical token where the parse error
occurred, and <text> is the actual text of the recognized token. You must make every effort to
match the error reporting behavior of the reference parser. However, the next section describes
how we will validate this.

6.2.1 Validation

The JSON output from your submission will be compared to the JSON output from the reference
implementation. The JSON files need not match verbatim, since whitespace is ignored and the
order of properties in a JSON object is not specified. Instead, the JSON object produced by
your parser will be compared with the JSON object produced by the reference implementation
by recursively comparing all properties and their values. You can use an online tool such as
http://www.jsondiff.com to compare two JSON objects for semantic equivalence or to find where
in the tree they are different.

For any given test input program, if your parser outputs a string that is not valid JSON, then
the test is considered failed. When the input is a syntactically valid ChocoPy program, the test
fails if the JSON object produced by your parser is different from the JSON object produced by the
reference implementation. In case of invalid ChocoPy programs that lead to syntax errors, the error
messages produced by your parser may be slightly different from the reference implementation due
to differences in implementing error recovery mechanisms. For this reason, we will only compare
the line and column number of the first token that results in error.

You can run the following command to the test the output of your parser by comparing it to
the outputs of the samples provided:

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.ChocoPy --pass=s --dir

src/test/data/pa1/sample --test

6.3 Project skeleton

You have been provided a skeleton project in the assignment repository with some starter code.
The project contains code for generating a lexer and parser for a tiny subset of ChocoPy. The
starter code also contains a hierarchy of Java classes corresponding to the AST structure.

7

You are welcome to extend this code in any way you like or to discard the starter code and
develop a new project from scratch. The only requirement is that the submitted project must
build using the command mvn code package, and the generated parser must be runnable and
testable using the exact commands listed in this document. You must not modify classes in the
chocopy.common package directly, since the test framework and reference implementation also
depend on them. However, feel free to duplicate classes in a custom package such as chocopy.pa1
and then modify them.

6.4 Writeup

Before submitting your completed assignment, you must edit the README.md and provide the
following information: (1) names of the team members who completed the assignment, (2) acknowl-
edgements for any collaboration or outside help received, and (3) how many late hours have been
consumed (refer to the course website for grading policy).

Further, you must answer the following questions in your write-up by editing the README.md
file (one or two paragraphs per question is fine):

1. What strategy did you use to emit INDENT and DEDENT tokens correctly?

2. What was the hardest language feature (not including indentation) to implement in this assign-
ment? Why was it challenging?

3. What kind of parse errors does your parser detect? In what situations can it recover? Explain
with the help of examples from the custom tests that you have written.

7 Implementation Notes

JFlex ChocoPy, like Python, uses an indentation-based syntax for determining boundaries of
blocks of statements. The ChocoPy manual goes into some detail about how to emit INDENT and
DEDENT tokens, but you need to figure out the best way to engineer this in JFlex. There is definitely
more than one way to implement this scheme. You may want to go through the JFlex manual to
get some idea on the various features it supports. Hint: Read about %state, YYINITIAL, and the
yypushback() method for controlling the behavior of the lexer. Read the paragraph on verbose
debugging below for directions on how to debug your lexer.

CUP You must be careful about declaring types for terminals and nonterminals. Typed terminals
and nonterminals can be referenced via the colon syntax in production rules to bind their values
to variables for use in action rules (look at the rules ChocoPy.cup in the starter code). Do not
try to force symbols to be of a particular type by adding unnecessary type casts—this will open
up the possibility of unexpected class cast exceptions in corner cases. Instead, modularize your
production rules by declaring accurate types for nonterminals depending on what AST nodes they
resolve to. The starter code also provides hints on how to collect the start and end source location
information (i.e., line and column numbers) from the leftmost and rightmost symbols matched in
a production rule.

8

Verbose debugging You can run mvn clean package -Dchocopy.debug=true to see addi-
tional information about the lexer and parser generation process. In particular, JFlex prints NFAs
and DFAs constructed from the specifications in ChocoPy.jflex, and CUP prints LALR parsing
tables and transition rules generated from the grammar in ChocoPy.cup. You can also provide
the --debug parameter to the StudentParser when running your parser on some input file; this
flag will tell the generated parser to print information about shifts and reduces performed during
parsing of an input program. If you are interested in observing the sequence of tokens produced by
your lexer, you can run the following command:

java -cp "chocopy-ref.jar:target/assignment.jar" chocopy.pa1.ChocoPyLexer <input file>

You can replace pa1 with reference in the above command to see the corresponding output by the
reference lexer. Note: The output of your lexer need not match exactly the output of the reference
lexer, since there are different ways in which you can process blank lines and indentation to parse
the same syntax. This command is for debugging purposes only. You will only be graded on the
JSON outputs of your parser.

8 Submission

Submitting your completed assignment requires the following steps:

• Run mvn clean to rid your directory of any unnecessary files.

• Add and commit all your progress and push changes to the repository. Run git commit followed
by git push origin to achieve this.

• Tag the desired commit with pa1final. If the desired commit is the latest one, run git tag

pa1final. Otherwise, run git tag pa1final <commit-id> where <commit-id> is the commit
you want to tag as your final submission.

• Push the tag using git push origin pa1final.

9 Grading (50 points)

The grading rubric is as follows

• 42 points for autograder tests.

• 4 points for the README.

– 4: Thorough discussion of design decisions (including handling of indentation) and choice
of test cases.

– 2: Vague or hard to understand; omits important details.

– 0: Little to no effort.

• 4 points for code cleanliness:

– 4 : Clear naming for variables and other symbols, consistent spacing and punctuation
conventions, reasonable modularization of functions and other components, code comments
explaining non-obvious logic.

9

– 2 : Effort made but imprecise or lacking in quality

– 0 : Little to no effort to organize and document code

9.1 Extra credit: Bug reports

The reference implementation possibly contains some bugs. If you find a bug, report it by sending
us a post on Piazza with a sample input program and describe how the expected output should
differ. The first student/team to report a bug gets extra credit (2 points per unique bug with a
maximum of 20 extra credits per team).

Bugs in the reference implementation are defined as (1) unexpected exceptions being reported
or (2) violations of the specifications of the assignment or the specifications of the ChocoPy manual,
which would lead to incorrect results. Minor mistakes in the ChocoPy manual or this document
itself are not considered bugs in the reference implementation, though we would appreciate any
such feedback.

The decision on whether to accept a bug report as valid and distinct from previous bug reports
is at the discretion of the instructors.

10

