
Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Garaph: Efficient GPU-accelerated Graph
Processing on a Single Machine

with Balanced Replication
Lingxiao Ma, Zhi Yang, and Han Chen, Computer Science Department, Peking University,

Beijing, China; Jilong Xue, Microsoft Research, Beijing, China; Yafei Dai, Institute of Big Data
Technologies Shenzhen Key Lab for Cloud Computing Technology & Applications, School of

Electronics and Computer Engineering (SECE), Peking University, Shenzhen, China

https://www.usenix.org/conference/atc17/technical-sessions/presentation/ma

Garaph: Efficient GPU-accelerated Graph Processing on a Single Machine
with Balanced Replication

Lingxiao Ma§#, Zhi Yang§#∗, Han Chen§, Jilong Xue† and Yafei Dai‡
§Computer Science Department, Peking University, Beijing, China

†Microsoft Research, Beijing, China
‡Institute of Big Data Technologies Shenzhen Key Lab for Cloud Computing

Technology & Applications, Peking University, China

Abstract

Recent advances in storage (e.g., DDR4, SSD, NVM)
and accelerators (e.g., GPU, Xeon-Phi, FPGA) provide
the opportunity to efficiently process large-scale graphs
on a single machine. In this paper, we present Garaph,
a GPU-accelerated graph processing system on a single
machine with secondary storage as memory extension.
Garaph is novel in three ways. First, Garaph propos-
es a vertex replication degree customization scheme that
maximizes the GPU utilization given vertices’ degrees
and space constraints. Second, Garaph adopts a balanced
edge-based partition ensuring work balance over CPU
threads, and also a hybrid of notify-pull and pull com-
putation models optimized for fast graph processing on
the CPU. Third, Garaph uses a dynamic workload assign-
ment scheme which takes into account both characteris-
tics of processing elements and graph algorithms. Our
evaluation with six widely used graph applications on
seven real-world graphs shows that Garaph significantly
outperforms existing state-of-art CPU-based and GPU-
based graph processing systems, getting up to 5.36x
speedup over the fastest among them.

1 Introduction

Triggered by the availability of graph-structured data in
domains ranging from social networks to genomics and
business, the need for efficient large scale graph process-
ing has grown. The resulting demand has driven the de-
velopment of many distributed systems, including Pregel
[22], Giraph [2], GraphX [11], GraphLab [21], Power-
Graph [10], PowerLyra [7] and Gemini [36]. These sys-
tems attempt to scale to graphs of billions of edges by
distributing the computation over multiple cluster nodes.
However, the performance of existing graph frameworks

∗Corresponding author (yangzhi@pku.edu.cn)
#These authors contributed equally to this work.

relies on effective partitioning to minimize communica-
tion, which is very difficult for natural graphs [1, 20, 10].
Therefore, network performance required for communi-
cation between graph partitions emerges as the bottle-
neck, and thus distributed graph systems require very fast
networks to realize good performance.

As an alternative, several non-distributed graph pro-
cessing systems have been proposed. Galois [27] and
Ligra [32] are specific for shared-memory/multi-core
machines, whereas GraphChi [17], X-Stream [29] and
GridGraph [37] are designed for processing large graphs
on a single machine, by relying on secondary storage.
Such solutions no longer require the resources of very
large clusters, and users need not to be skilled at manag-
ing and tuning a distributed system in a cluster.

But the large amount of data to be processed in a single
machine put pressure on two scarce resources: memory
and computing power. We observe, however, that today
more efficient non-distributed solutions are affordable.
On the one hand, current commodity single unit servers
can easily aggregate hundreds of GBs to TBs of RAM
[32]. Further, with recent advances of secondary stor-
age such as SATA/PCIe-based solid-state drive (SSD)
and non-volatile memory (NVM), it is feasible to aggre-
gate multiple secondary storages to achieve a high access
bandwidth close to memory. On the other hand, current
GPUs have much higher massive parallelism and mem-
ory access bandwidth than traditional CPUs, which has
the potential to offer high-performance graph processing.

Given these recent advances, GPU-accelerated,
secondary-storage based graph processing has the poten-
tial to offer a viable solution. However, while several
attempts [8, 34] have been made recently, efficient large-
scale graph computation on CPU/GPU hybrid platforms
still remains a challenge due to the highly skewed de-
gree distribution of the natural graphs and heterogeneous
parallelism of CPU and GPU. In particular, the skewed
degree distribution implies that a small fraction of the
vertices are adjacent to a large fraction of the edges. This

USENIX Association 2017 USENIX Annual Technical Conference 195

0

1

2

3

4

5

1

4

2
2

5

1

5

31

0 1 2 4
1 4 1 4 0 0 3 2 4Nbr

Idx 5 7 9
CSR (outgoing edges)

0 2 4 5
3 4 0 2 5 4
1 2 1 3 5 4 2 5 1

1 2 5
Edge

Nbr

Idx 6 9 9
CSC (incomming edges)

0 0 1 1IdxOff 2 0 1 1 1
Shard 0 Shard 1

0
0
0
0
0
0

5
4
3
2
1
0

Vertex

Figure 1: Graph Representation in Garaph

concentration of edges results in heavy write contention
among GPU threads due to atomic updates of the same
vertices. Colliding threads will be serialized, serious-
ly harming performance on GPUs. Further, the power-
law degree distribution can lead to substantial work im-
balance across CPU threads in existing non-distributed
graph systems that treat vertices symmetrically. Thus, its
impact on the parallelism of both GPU and CPU should
be alleviated by effective optimization techniques. An-
other challenge is how to efficiently integrate heteroge-
neous parallelism of CPU and GPU for graph processing
under an unified abstraction, as CPUs are fast for the se-
quential processing whereas GPUs are suitable for the
bulk parallel processing.

In this context, we present Garaph, a non-distributed
system that supports GPU-accelerated graph processing
with secondary storage as memory extension. Garaph
enables using all CPU and GPU cores on a given node
for graph processing, and with Garaph’s abstractions,
users only need to write one program that can be execut-
ed by both CPU and GPU. Besides, Garaph uses an ar-
ray of SSDs to achieve high throughput and low latency
storage, which enables the system to process large-scale
graphs exceeding the computer’s memory capacity.

Garaph is novel in the following aspects: To cope
with the heterogeneity of vertex degree, Garaph propos-
es a vertex replication degree customization scheme on
the GPU side that maximizes the GPU utilization given
vertex degree and space constraints. On the CPU side,
Garaph adopts a balanced edge-based partition to ensure
work balance over CPU threads. For the heterogeneity of
computation units, Garaph first uses a pull computation
model matching the SIMD processing model of GPU,
and a hybrid of notify-pull and pull computation mod-
els optimized for fast sequential processing on the CPU.
Further, Garaph uses a dynamic workload assignment
scheme which takes into account both the characteristics
of processing elements and the properties of graph appli-
cations. These new schemes together make for an effi-
cient implementation, achieving full parallelism on both
CPU and GPU sides in a single machine.

We evaluate our Garaph prototype with extensive ex-
periments and compared it with four state-of-the-art
systems. Experiments with six applications on seven
real-world graphs demonstrate that Garaph significantly
outperforms existing state-of-art CPU-based and GPU-

based systems, getting a speedup of 2.56x on average
(up to 5.36x). Through solving conflicts in computation,
customized replication scheme can improve GPU’s per-
formance by 4.84x speedup on average (up to 32.15x).

2 System Overview

In this section, we give a brief overview on the graph
representation, the architecture and the computation ab-
straction of Garaph.

2.1 Graph Representation

Garaph adopts both Compressed Sparse Column (CSC)
and Compressed Sparse Row (CSR) for organizing in-
coming and outgoing edges, respectively. The index ar-
ray Idx records each vertex’s edge distribution: for ver-
tex i, Idx[i] and Idx[i+1] indicate the beginning
and ending offsets of its incoming/outgoing edges. The
array Nbr records sources of incoming edges or des-
tinations of outgoing ones. The arrays Vertex and
Edge record values of vertices and edges, respective-
ly. For example, as shown in CSC of Figure 1, Idx[0]
and Idx[1] indicates that vertex 0 has two incomming
edges with sources 3,4 and values 1,2, respectively.

As stated in CuSha [16], the CSR representation is not
friendly for processing graphs in GPUs, which could in-
cur high frequency of non-coalesced memory accesses
and warp divergence. To overcome this problem, we al-
so adopt the concept of shard. In particular, we split the
vertices V of graph G = (V,E) into disjoint sets of ver-
tices and each set is represented by a shard that stores
all the incoming edges whose destination is in that set.
Edges in a shard are listed based on increasing order of
their indexes of destination vertices. Given sorted edges,
we index the destination of each edge by the offset to the
first destination vertex in this shard, represented by a ar-
ray of IdxOff, for example, as illustrated in Figure 1,
edges with destination 3,4,5 are in shard 1 and destina-
tions’ IdxOff are 0,1,2, respectively.

To improve GPU utilization, we allow each shard to be
fit into the shared memory for high bandwidth. Specifi-
cally, the number of vertices in each shard is determined
by Cshm/(NBlock · Svertex), where Cshm is the size of the
shared memory, NBlock is the number of threads blocks
in the SM and Svertex is the size of one vertex. Howev-
er, if a chunk adopts vertex replication with a factor of
R (described later), the shard size should reduce by R
times. In practice, one block of GPU threads can use up
to 48KB shared memory. Let Svertex ≥ 32 bits for billion-
scale graphs, so each shard contains at most 12K ver-
tices. This also implies that maximum offset in IdxOff
is 12K, so we can use 16-bit integer to represent the index
of destination vertices. This compression could not only
save GPU memory, but also reduce the traffic of copying

196 2017 USENIX Annual Technical Conference USENIX Association

Storage Storage Storage

GPU

Global
Memory Vertex Data

Page

 Host
 Memory

Vertex DataPage PagePage

SM

Dispatcher

CPU

Sync

Secondary Storage

Garaph Architecture

ShardShard

Figure 2: Garaph Architecture

a shard from the host memory to the GPU memory.
To improve the efficiency of CPU-GPU memory copy,

we transfer the shards from host memory to GPU memo-
ry in batch. In the following, we call the set of shards
transferred in a batch as a page. Each page contains
the maximum number of consecutive shards that can be
stored completely in the GPU memory. As we shall de-
scribe later, the system also leverages the multi-stream
feature of GPUs for the overlap of memory copy and ker-
nel execution. Let Ns be the number of streams. In this
case, the page size is chosen as the maximum number of
shards that can be stored in 1/Ns of the GPU memory.

With above graph representations, our system adopts
the following two vertex-centric computation models.
The first is pull model where every vertex updates its
state by pulling the new states of neighboring vertices
through incoming edges. The other is the notify-pull
model where only the active vertices notify their outgo-
ing neighbors to update, who in turn perform local com-
putation by pulling states of their incoming neighbors.
Clearly, this model is more effective in case of few active
vertices. Note that the CSR is only used for notification.
To save memory usage, Garaph does not store the values
of outgoing edges in the CSR (see Figure 1).

2.2 System Architecture.
Figure 2 shows the architecture of Garaph, which con-
sists of three main components: dispatcher, CPU and
GPU computation kernels.
Dispatcher. This functional module is responsible for
loading graph from secondary storages, distributing the
computation over CPU and GPU and making adjustment
if necessary. To exploit I/O parallelism, Garaph parti-
tions the each graph page of into equal-size data blocks,
which are uniformly distributed over multiple secondary
storages (e.g., SSDs) with a hash function.

To process the graph, data blocks are loaded from the
secondary storages to the host memory to construct pages
by the dispatcher. After one page has been constructed,
it will be dispatched to either the CPU or the GPU.
GPU/CPU computation kernel. These two kernels

interface GASVertexProgram(u)
gather(Du,D(u,v),Dv)→ Accum
sum(Accum left,Accum right)→ Accum
apply(Du,Accum)→ Dnew

u
activate(Dnew

u ,Du)→ A[u]

Figure 3: Garaph API

are in charge of graph processing. After receiving a page
from the dispatcher, the GPU kernel processes the shards
of page in a parallel manner, where each shard is pro-
cessed by a block in the GPU. For efficient graph pro-
cessing, only the pull model is enabled on the GPU side.
This is because the notify-pull model can lead to high
frequency of non-coalesced memory accesses because of
poor locality and warp divergence caused by distinguish-
ing active/inactive vertices, significantly limit its perfor-
mance while processing graphs in the GPU.

The CPU kernel enables both pull and notify-pull com-
putation models. To balance the computation across mul-
tiple threads, the kernel divides edges of a page into sets
of equal size, with each thread processing one edge set.
When either of two kernels has processed one page, there
will be a synchronization between the CPU and the GPU.
We shall describe these two kernels in Section 3 and 4.

Garaph enables programs to be executed both syn-
chronously and asynchronously. As the system process-
es the graph page-by-page, we define an iteration as a
complete process over all the pages for one time, irre-
spective of synchronous or asynchronous execution. The
synchronous execution model ensures a deterministic ex-
ecution regardless of the number of machines and closely
resembles Pregel [22]. Changes made to the vertex data
are committed at the end of each iteration and are visible
in the subsequent iteration. When run asynchronously,
changes made to the vertex data are immediately com-
mitted and visible to current and subsequent iterations.
The system terminates the processing if the graph state
converges or a given number of iterations are completed.
Fault Tolerance. Garaph enables fault tolerance by
writing the vertex data to secondary storages periodical-
ly. When Garaph runs synchroniously, Garaph will write
the vertex data into stable storages after one or several
iterations (user-defined). When Garaph runs asynchro-
niously, Garaph will write the updated vertex data from
the main memory into stable storages after one page has
been processed or write the whole vertex data into sta-
ble storages after one or several iterations (user-defined).
When a fault occurs, it loads the vertex data from the
secondary storage and continues to run the application.

2.3 Programming APIs
Garaph implements a modified Gather-Apply-Scatter
(GAS) abstraction used in PowerGraph [10]. For a vertex

USENIX Association 2017 USENIX Annual Technical Conference 197

template<typename T>
h o s t d e v i c e void u n i f i e d A d d (T ∗addr , T v a l) {

i f d e f CUDA ARCH / / For GPU, a t om ic o p e r a t i o n
atomicAdd (addr , v a l) ;

e l s e / / For CPU, non−a tom ic o p e r a t i o n
∗add r += v a l ;

e n d i f
}

Figure 4: Garaph unifiedAdd Operation

u, the gather function is passed the data on the adjacent
vertex Dv and edge D(u,v) and returns a temporary accu-
mulator Accum, which is combined using the commuta-
tive and associative sum operation. When algorithms are
commutative and associative, this abstraction is equiva-
lent to original GAS abstraction [10]. After the gather
phase has completed, the apply function takes the final
accumulator and computes a new vertex value Dnew

u .
In the GAS abstraction, the scatter function is invoked

to produce new edge value Dnew
(u,v) which are written back

to different machines in a distributed environment. How-
ever, Garaph is specific for a non-distributed platform,
where each vertex can access its neighbors’ updated val-
ues in memory so that pushing new data over edges is
unnecessary. Thus, we modify the scatter function to ac-
tivate function which sets A[u] = 1 if vertex u satisfies
the active condition defined in the function (e.g., there is
a significant change in the vertex value), otherwise, the
function sets A[u] = 0 to indicate u is inactive. Figure 3
shows the functions Garaph supports.

Garaph packages a set of operations with atomic and
non-atomic as unified operations (e.g. unifiedAdd in fig-
ure 4) which covers all the atomic operations of CUDA
[25]. In Garaph, users only need to write one kernel code
which could be executed by both CPU and GPU. Since
multiple GPU threads might simultaneously modify the
same memory address, the user-provided sum function
must be atomic on the GPU side. Garaph packages the
non-atomic operations for CPU and the atomic opera-
tions for GPU into one set of operations, so that users
could directly invoke irrespective of implementing the
program on GPU or CPU.

3 GPU-Based Graph Processing

In this section, we first describe how Garaph executes
iterative parallel graph algorithms on the GPU side. We
then propose an vertex replication degree customization
scheme that maximizes the expected GPU performance
given properties of the graph and the GPU.

3.1 Graph Processing Engine
To facilitate efficient processing of graphs on GPU us-
ing shards, the GPU kernel maintains an array named

GPU

 Global Memory
Global

Vertices
Page

1. Initialization

2. Gather

4. Sync

H
ost M

em
o

ry

3. Apply

Local Vertices
3. Apply Shared Memory

/L1 Cache

SM

Shard

Figure 5: GPU-Based Graph Processing Engine

GlobalVertices in the global memory, which allows
quick access to the values of vertices. Current GPUs
can support up to 24GB global memory, whereas the
size of vertices is usually 4 bytes (FP32 or INT) or 2
bytes (FP16). So GPUs can store up to 6 billion (or 12
billion) vertices in global memory, which is sufficient
for most datasets, for example, the largest open source
dataset (HyperLink12 [18]) has 3.5 billion vertices.

Multiple shards of a page are processed by threads
blocks running on many streaming-multiprocessors
(SM) in a parallel manner, where each shard is processed
by a thread block. As illustrated in Figure 5, each shard
in a page is processed by one GPU block in three phas-
es: initialization, gather and apply. When the page has
been processed, the new vertex values are synchronized
between GPU global memory and host memory. Let Si
represent the destination vertices in one shard.
Initialization. At the beginning, the GPU allocates an
array LocalVertices in the shared memory of this SM
to store the accumulate value of each vertex in a shard.
Then, consecutive threads of a block initialize this array
with default vertex values defined by users, e.g., 0 for the
PageRank application.
Gather. Threads of one GPU block process edges
of an individual shard. For each edge (u,v), one
thread fetches vertex and edge data from the glob-
al memory and increases the accumulate value: au ←
sum(au,gather(Du,D(u,v),Dv)),∀v∈Nbr[u]. To have co-
alesced global memory accesses, consecutive threads of
the block read consecutive edges’ data in global memory.
Apply. Each thread of a block updates the vertex value
in the shared memory: Dnew

u ← apply(Du,au),∀u ∈ Si.
Consecutive threads of this block process consecutive
vertices. When executing programs asynchronously, the
system commits new vertex data to the GlobalVertices
array, which are immediately visible to the subsequent
computation. Otherwise, these values are written to a
temporary array in the global memory, which would be
visible in the next iteration.
Synchronization from GPU to CPU. Once the whole
graph page has been processed, the GPU global memo-
ry will be synchronized with the host memory. For pro-
grams executed asynchronously, the system transmits the

198 2017 USENIX Annual Technical Conference USENIX Association

updated values of the GlobalVertices in the GPU glob-
al memory to the array storing the most updated values
of vertices in the host memory. For those executed syn-
chronously, updated values stored in the temporary space
of the GPU global memory are transmitted to a tempo-
rary array in the host memory, which will be committed
after this iteration ends. As the PCIe bus is full-duplex
and most GPUs have two copy engines, the synchroniza-
tion can be overlapped with processing pages in GPU.

3.2 Replication-Based Gather
Our above GPU-accelerated framework provides a con-
venient environment to write graph processing applica-
tions. However, the current design still suffers the write
contention problem in the gather phase, since multiple
threads might collide while simultaneously modifying
the same shared memory address (e.g., processing edges
with the same destination). Such a collision is called as
position conflict. The position conflict typically entails a
need to serialize memory updates that is resolved by us-
ing atomic operations. These consist of a memory read,
an arithmetic operation, and a memory write, entailing
a latency penalty that is proportional to the number of
colliding threads n: a n-way position conflict incurs a
penalty of (n−1)× tposition, where tposition is the process-
ing time of one atomic operation [9].

Notice that natural graphs in the real-world have high-
ly skewed power-law degree distributions, which implies
that position conflicts will be very frequent, especially
for those vertices of high degree. The heavy write con-
tention leads to an immense performance bottleneck on
the GPU side, so its impact on the gather phase should
be alleviated by effective optimization techniques.

A general strategy for reducing the conflicts is repli-
cation, which consists of placing R adjoining copies of
the partial accumulated value a′u in the shared memory
to spread these accesses over more shared memory ad-
dresses. Then these R partial accumulated values are ag-
gregated to calculate the final accumulated value au for a
vertex u. Here, R is called as replication factor.
Mapping and Aggregation To implement the repli-
cation, a mapping function is needed to assign to each
thread a replicated copy of the vertex, where the thread
will perform the atomic operations. For efficient map-
ping, we require the vertices of a shard Si have the same
replica factor of Ri. So for any vertex ui in this shard,
the mapping function used in our system is given by:
addr[u′i] = (i−rs)∗Ri+tid%Ri,∀ui ∈ Si, where addr[u′i]
represents the address of the replica u′i assigned to the
thread tid, and the rs is the beginning index of the shard.

The mapping makes consecutive threads access con-
secutive copies. With the mapping, threads perform
gather on multiple replicas in a parallel manner: a′u ←

0 0 1 1 2 2 3 3

0 0 0 0 2 1 1 0

Src Dst Val

0 2 1

1 2 1

3 2 1

0 3 1

(a) Mapping (R = 2)

0 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 1

4 4 2 2 1 1 1 1

8 4 2 2 1 1 1 1

Stride L
4

2

1

0

(b) Aggregation (R = 8)

Figure 6: Mapping and Aggregation

sum(a′u,gather(Du,D(u,v),Dv)),∀v∈Nbr[u′], where u′ is
a replica of vertex u.

After all the edges in the shard have been processed,
the system needs a additional phase to aggregate values
of different replicas in the shared memory, i.e., au ←
sum(au,a′u). For fast aggregation, we set Ri = 2n(n≥ 0)
to implement a two-way merge illustrated in Figure 6(b).
In each iteration, the thread tid executes the user-defined
sum function with a stride length of L. Initially, L=Ri/2,
after all replicas are processed, L← L/2 and the next it-
eration begins. This procedure stops until L < 1.
Replication Factor Customization. Although repli-
cation can reduce write conflicts, excessive replication
could still lead to GPU underutilization in that fewer ver-
tices can be fit in the shared memory. To achieve a bal-
anced replication, we propose a replication factor cus-
tomization scheme that maximizes the expected perfor-
mance under given conflict degree and space constraints.

To do so, we model the execution time of the
replication-based gather phase to examine impact of Ri.
Let Vi, Ei be the number of destination vertices and edges
in a shard Si, and let tl and ta be the time of accessing the
global memory and executing an atomic operation in the
shared memory, respectively.

In the gather phase, to process a shard Si with repli-
cation factor Ri, threads read Ri×|Vi| vertices’ data and
|Ei| edges’ data from the global memory into the shared
memory, thus taking Ri× |Vi| × tl and |Ei| × tl , respec-
tively. In the shared memory, threads execute |Ei| atom-
ic operations with the average conflict degree of |Ei|

|Vi|×Ri
,

which takes |Ei|2
|Vi|×Ri

× ta. The final step of aggregation
takes |Vi| × ta × logRi. Thus, the total time TG(Ri) of
processing the shard Si is given by:

TG(Ri) = Ri|Vi|tl + |Ei|tl +
|Ei|2

|Vi|Ri
ta + |Vi|ta logRi. (1)

Our goal is to find the Ri minimizing TG(Ri). We sim-
plify the above equation with logRi � Ri, and T (Ri) is

minimized when Ri×|Vi|× tl =
|Ei|2
|Vi|×Ri

× ta.
Solving the above equation, we get the best replica-

tion factor for a shard Si as: Ri =
|Ei|
|Vi| ·

ta
tl

. In practice,

ta ≈ tl , and we get Ri =
|Ei|
|Vi| . Notice that position con-

flicts between two consecutive threads will be complete-

USENIX Association 2017 USENIX Annual Technical Conference 199

Page

0 1 2 r0 r0 r1 r_{p-1} n

Rep Rep Rep

1. Gather

GlobalVertices

Aggregation

2. Apply
Thread 0 Thread 1 Thread Thread p-1

LocalVertices

Figure 7: Processing with Edge Partitions on the CPU

ly removed when the replication factor is up to 32, i.e.,
one copy for each thread of one warp [13]. Also recall
Ri = 2n(n ≥ 0) for efficient aggregation, so we choose
the value of 2n form that is closest to average degree of a
shard as its final replication factor:

Ri = 2min
{⌈

log |Ei |
|Vi |
−0.5

⌉
,5
}
. (2)

Our replication policy suggests that the number of
replicas for each vertex should be customized to the av-
erage degree of vertices in a given shard. Specifically,
shards containing more high-degree vertices tend to have
higher replication degrees for a larger probability of re-
duction in conflicts.

4 CPU-Based Graph Processing

In this section, we first describe the graph processing of
Garaph on the CPU side, which adopts a balanced edge-
based partition to exploit full parallelism. We then de-
scribe the dual-mode processing model of Garaph, which
adaptively switches between the pull/notify-pull modes
according to the density of active vertices in the page.

4.1 Processing with Edge Partitions

Existing single-node graph systems treat vertices sym-
metrically and parallelize the graph processing by as-
signing each thread a subset of vertices to process. How-
ever, this method leads to substantial computation imbal-
ance due to the power-law degree distribution. Further, it
also increases the random memory access of edge data if
adjacent vertices are assigned to different threads. These
issues degrade the overall system performance.

Different from common systems, Garaph adopts edge-
centric partition. As illustrated in Figure 7, the edges
of a page are equally partitioned across threads, where
multiple CPU threads process independent edge sets in a
parallel manner. Vertices cut at the partition boundaries
would be replicated, and the system would aggregate the
replicas’ values to obtain the vertex value. This partition
enhances the sequential access of edge data and improves
work balance over threads.

The CPU engine also maintains a GlobalVertices ar-
ray in the host memory for quick access to values of ver-
tices. Each page is processed in three stage: initializa-
tion, gather, apply. If a page has been processed on the
GPU side, the system also synchronizes new vertex val-
ues between the GPU memory and the host memory. For
a common graph application, the processing is done by
pulling new vertex states along outgoing edges, until the
graph state converges (e.g., no active vertices) or a given
number of iterations are completed. Vertices with signif-
icant state change are called active vertices (determined
by activate() function). We use a bitmap A to indicates
the inactive/active state of each vertex.

Initialization. Let nt be the number of CPU threads.
The edges of the page is divided to nt partitions of the
same size, and thread tid processes the tidth partition.
The fist and last vertices of partition will create a repli-
ca respectively if they are cut at the boundaries. So the
number of replicas is at most nt − 1. Each CPU thread
maintains a LocalVertices array to store the accumulate
values of destination vertices in the corresponding par-
tition. Like the GPU, this array is initialized with the
vertices’ default value defined by users.

Gather. Each partition of the page is processed by one
CPU thread. For each edge, the CPU thread performs
gather and updates the accumulate value au in LocalVer-
tices with sum function. Edges are processed in a se-
quential order whereas the source vertices’ values are
accessed randomly by each thread. After each thread
has processed its partition, an aggregation phase aggre-
gates values of vertices replicated at the partition bound-
aries. Recall that the number of replicas is at most nt−1,
which is small enough for one CPU thread to process.
In Garaph, thread 0 scans the whole partitions in the re-
verse order and aggregates values of replicated vertices,
as illustrated in Figure 7.

Apply. After the gather phase of each page is fin-
ished, every thread updates vertices’ values in their own
LocalVertices array. For each partition, if the first vertex
is replicated, it will be ignored because its value has al-
ready been aggregated to the last vertex of the previous
adjacent partition. For each vertex in a partition, the cor-
responding thread calls activate() function to examine if
the vertex is active or not and updates the bitmap A.

Synchronization from CPU to GPU. As described in
Section 3.1, after the GPU has processed a page, it sends
the corresponding vertex values to the host memory.
When receiving the new values, the system first calls Ac-
tivate() function to update the bitmap A of these updated
vertices. When runs asynchronously, the system enables
the updates received from the GPU immediately visible
through writing them into the GlobalVertices array of
host memory. After that, the system sends back new ver-

200 2017 USENIX Annual Technical Conference USENIX Association

tices updated on CPU side to the GPU and overwrites
the corresponding part of the GlobalVertices array in the
GPU global memory. When run synchronously, the sys-
tem stores updated values in a temporary array, and com-
mits these new values at the end of each iteration. In this
case, the CPU transmits the new GlobalVertices array to
that in the GPU memory at the end of each iteration.

4.2 Dual-Mode Processing Engine

To this end, our CPU-based processing engine adopts a
pull mode where every vertex performs local computa-
tion by pulling the states of neighboring vertices through
incoming edges. However, a vertex needs to be updat-
ed only when one of its source vertices is active in the
previous iteration. Thus, another way to process vertices
is notify-pull mode where only the vertices activated in
the last iteration notify their outgoing neighbors, who in
turn perform local computation by pulling states of their
incoming neighbors. Intuitively, the notify-pull mode is
more efficient when few vertices are active in the last it-
eration (sparse active vertex set), as the system only tra-
verses the outgoing edges of active vertices where new
updates to be made. In contrast, the pull mode is more
beneficial when most vertices are activated (dense active
vertex set), which avoids the extra cost of notifications.

At a given time during graph processing, the active
vertex set may be dense or sparse. For example, SSSP or
the BFS starts from a very sparse set, becoming denser
as more vertices being activated by their in-neighbors,
and sparse again when the algorithm approaches conver-
gence. To incorporate the benefits of both modes, we
extend our CPU processing to a dual engine design de-
termined by the size of the vertex set VA = {v|(u,v) ∈
E,A[u] = true} given graph G(V,E), i.e., the outgoing
neighbors of vertices activated in the last iteration.

We first consider the case where the graph representa-
tions can be completely loaded into the host memory. Let
Tpull be the time of graph processing in the pull mode.
Clearly, Tpull is independent of |VA|. In contrast, the
notify-pull mode only notifies a fraction of f = |VA|/|V |,
who are updated in turn. Hence, we estimate the average
processing time in this mode as Tnoti f y−pull = 2 f Tpull , as
the time to notify is at most equal to pulling state along
edges. So the system would adopt notify-pull mode if
the f ≤ 1/2 (i.e., Tnoti f y−pull < Tpull), otherwise, the pull
model would be adopted.

However, for the scenario where only part of graph
can be loaded into the host memory, the system entails
I/O cost due to sequential and random accesses of out-
going/incoming edges on secondary storage for pull and
notify-pull modes respectively. Let k (k > 1) be the rate
of speeds between sequential read and random read (e.g.,
k≈ 10 in SSD), the Tnoti f y−pull = 2k f ·Tpull . In this case,

the system would adopt notify-pull mode if f ≤ 1
2k .

Let Γ= {u|A[u] = 1} be the set of active vertices in the
last iteration, the system can estimate f ≈ ∑u∈Γ du

|E| where
du is the out-degree of an active vertex u and E is the set
of edges. Garaph estimates f in the beginning of each
iteration and choose which mode to use based on f .

5 Dispatcher

We have discussed how to design and optimize graph
processing kernel for efficient execution on both GPU
and CPU sides. To further improve the performance, we
propose an adaptive scheduling mechanism to exploit the
overlap of two engines. Besides, we also perform multi-
stream scheduling for data transfer and GPU kernel ex-
ecution overlap. Below we shall detail each scheduling
strategy respectively.

5.1 CPU-GPU Scheduling
We first determine when it is beneficial to adopt GPU ac-
celeration. From Section 4.2 we know that the process-
ing time with only CPU kernel is TCPU = min{2 f ρ,1} ·
Tpull , where f is the fraction of vertices to be updated and
Tpull is processing time in the pull mode. Here, ρ = 1 if
the graph representations can be fit into the host memory,
otherwise, ρ = k, which is the rate of speeds between se-
quential read and random read of secondary storage. No-
tice that GPU-based kernel needs to process all the edges
of a given page, so the GPU’s processing time TGPU is
independent of f . Therefore, if TCPU < TGPU , the system
adopts CPU kernel only due to sparse active vertex set.
Otherwise, Garaph adopts both GPU and CPU kernels to
reduce the overall time of the processing.

Based on the above insight, our scheduler works as
follows: At beginning of every iteration, the scheduler
calculates the following ratio of TCPU to TGPU :

α = min{2 f ρ,1} ·
Tpull

TGPU
, (3)

where the fraction Tpull/TGPU is initialized by the speed
ratio of CPU/GPU hardwares, and is updated once both
kernels have begun to process pages. Specifically, let
t p
cpu and t p

gpu be the measured time to process a page
via CPU and GPU kernels, respectively, we can estimate
Tpull/TGPU = t p

cpu/(f · t p
gpu).

In the case of α < 1, only CPU kernel is used for graph
processing in this iteration as most vertices are inactive
(e.g., a very small f). Otherwise, the system processes
graph pages in parallel on both CPU and GPU kernels. In
the hybrid mode, the system reactively assigns a page to a
(GPU or CPU) kernel once the kernel becomes free. The
processing is finished if the graph state converges (i.e.,
f = 0) or a given number of iterations are completed.

USENIX Association 2017 USENIX Annual Technical Conference 201

Graph |V | |E| Max
in-deg

Avg
deg

Size
edgelist

uk-2007@1M 1M 41M 0.4M 41 0.6GB
uk-2014-host 4.8M 51M 0.7M 11 0.8GB
enwiki-2013 4.2M 0.1B 0.4M 24 1.7GB
gsh-2015-tpd 31M 0.6B 2.2M 20 10GB
twitter-2010 42M 1.5B 0.8M 35 27GB
sk-2005 51M 1.9B 8.6M 39 35GB
renren-2010 58M 2.8B 0.3M 48 44GB
uk-union 134M 5.5B 6.4M 41 0.1TB
gsh-2015 988M 34B 59M 34 0.7TB

Table 1: Graph datasets [19, 5, 4, 23] used in evaluation.

5.2 GPU Multi-Stream Scheduling
To trigger the graph processing on the GPU side, there
are two threads running on the host: the transmission
thread and the computation thread. The former thread
continuously transmits each page from the host memo-
ry to GPU’s global memory. The later thread launches
a new GPU kernel to process the page that has already
been transmitted.

Using NVIDIA’s Hyper-Q feature [24], we perform
multi-stream scheduling for the pipelining of CPU-GPU
memory copy and kernel execution, so that the pro-
cessing tasks of pages can be dispatched onto multi-
ple streams and handled concurrently. In particular, we
schedule tasks of processing pages onto Nstream streams,
the transmission thread periodically examines which
stream is idle, and dispatches the transmission task of one
page to the idle stream, where pages are asynchronous-
ly transferred from the host memory to the GPU global
memory. The computation thread periodically examines
which page has been completely transferred, and triggers
the computation of that page by dispatching the com-
putation task to the corresponding stream. This multi-
stream scheduling enables a high overlapping between
CPU-GPU memory copy and kernel execution.

6 Evaluation

In this section, we describe and evaluate our implemen-
tation of the Garaph system. Garaph is implemented in
more than 8,000 lines of C++ and CUDA code, com-
piled by GCC 4.8 and CUDA 8.0 on Ubuntu 14.04 with
O3 code optimization. In the CPU processing kernel, the
number of processing threads is equal to the number of
CPU cores by default. In the dispatcher module, each I/O
thread reads/writes one secondary storage device so that
threads process I/O operations in a parallel manner.

The experiments are performed on a system with
Nvidia GeForce GTX 1070 which has 15 SMs (1920
cores) and 8GB global memory. On the host side, there
is an Intel Haswell-EP Xeon E5-2650 v3 CPU with 10
cores (hyper-threading enabled) operating at 2.3 GHz

clock frequency, and 64GB dual-channel memory. PCI
Express 3.0 lanes operating at 16x speed transfer data
between the host DDR4 RAM (CPU side) and the device
RAM (GPU side).

We use the real-world graphs in Table 1 for evaluation.
The largest graph is the gsh-2015 graph with about 1 bil-
lion vertices and 34 billion edges. We use six represen-
tative graph analytics applications: single source short-
est paths (SSSP), connected components (CC), PageR-
ank (PR) [26], neural network (NN) [3], heat simulation
(HS) [16], circuit simulation (CS) [16]. We run PR, NN,
HS, CS for 10 iterations and CC, SSSP till convergence.
To get stable performance, the reported runtime is calcu-
lated as the average time of 5 runs.

6.1 Comparison with Other Systems

We compare Garaph of hybrid CPU/GPU kernels
(marked as Garaph-H in Table 2) with four state-
of-the-art systems: shared-memory systems including
CuSha [16], Ligra [32] and Gemini [36], and one
secondary-storage-based system GraphChi [17]. Here,
CuSha is a GPU framework for processing graphs that
can be fit in the GPU memory. To show the performance
of each kernel, we also give the performance of Garaph
with CPU-kernel only and GPU-kernel only (marked as
Garaph-C and Garaph-G in Table 2, respectively).

For datasets that can be placed in host memory, Table 2
presents the performance of evaluated systems. Benefit
from customized replication for reducing position con-
flicts, Garaph-G significantly outperforms CuSha in all
cases, 2.34x on average and up to 3.38x for PR on the
uk-2014-host dataset. Garaph-G also outperforms oth-
er CPU-based systems in compute-intensive applications
such as PR, NN, HS and CS. But for SSSP and CC, both
Garaph-G and CuSha take longer time to get conver-
gence, as they have to process the whole graph despite
of a few active vertices to be processed.

With balanced replication and the optimization for se-
quential memory access, Garaph-C also outperforms ex-
isting systems in many cases: e.g., for PR excluding
enwiki-2013 and sk-2005 datasets, for NN and SSSP ex-
cluding renren-2010 dataset and for CC in all datasets.
Adaptive dual-mode processing engine enables Garaph-
C to significantly outperform GPU-based systems in the
cases of SSSP and CC.

The above results reveal that Garaph-G is suitable for
compute-intensive applications whereas and Garaph-C
performs well in applications like SSSP and CC. With
the CPU-GPU scheduling, Garaph-H combines the ad-
vantages of both Garaph-C and Garaph-G. As a result,
Garaph-H significantly outperforms other systems in all
cases, e.g., 2.56x on average and up to 5.36x for CC on
the twitter-2010 dataset.

202 2017 USENIX Annual Technical Conference USENIX Association

PR NN
Graph CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H
uk-2007@1M 0.48 0.77 0.43 0.43 0.20 0.16 0.70 0.78 0.44 0.33 0.33 0.20
uk-2014-host 0.83 1.06 0.74 0.60 0.25 0.22 0.82 0.98 0.88 0.46 0.41 0.26
enwiki-2013 1.39 1.80 0.96 1.29 0.49 0.39 1.63 1.27 1.18 0.96 0.81 0.52
gsh-2015-tpd - 11.80 8.08 7.80 2.91 2.42 - 11.00 7.78 5.91 4.83 3.36
twitter-2010 - - 22.82 22.40 7.50 6.13 - - 20.67 18.53 11.80 8.61
sk-2005 - - 15.85 17.18 9.38 6.83 - - 18.42 12.46 15.67 9.73
renren-2010 - - 84.63 79.77 22.54 20.89 - - 67.60 73.50 22.47 20.63

SSSP CC
Graph CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H
uk-2007@1M 6.57 0.57 1.42 0.56 3.95 0.48 0.50 0.45 0.38 0.20 0.20 0.14
uk-2014-host 13.93 0.73 2.19 0.72 5.88 0.57 1.20 0.62 0.72 0.24 0.54 0.17
enwiki-2013 11.56 0.99 1.73 0.92 5.54 0.70 0.97 0.80 0.77 0.45 0.44 0.28
gsh-2015-tpd - 8.36 9.54 6.70 14.51 4.32 - 7.47 5.14 2.58 2.62 1.21
twitter-2010 - - 26.97 23.24 42.49 12.75 - - 17.78 8.78 12.04 3.32
sk-2005 - - 61.04 26.82 1335.29 18.13 - - 13.33 6.49 22.53 4.74
renren-2010 - - 54.60 73.00 615.82 26.79 - - 41.80 35.79 205.03 8.55

HS CS
Graph CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H CuSha Ligra Gemini Garaph-C Garaph-G Garaph-H
uk-2007@1M 0.80 0.87 0.30 0.39 0.33 0.23 0.80 0.87 0.32 0.43 0.33 0.23
uk-2014-host 0.98 1.06 0.71 0.55 0.41 0.29 0.99 1.06 0.83 0.59 0.41 0.29
enwiki-2013 1.95 1.69 0.98 1.14 0.81 0.55 1.95 1.44 0.91 1.19 0.81 0.55
gsh-2015-tpd - 13.80 6.15 6.67 4.84 3.40 - 11.10 6.30 4.84 7.20 3.45
twitter-2010 - - 18.83 21.17 11.81 9.11 - - 16.10 21.74 11.80 8.99
sk-2005 - - 13.52 14.34 15.66 9.95 - - 13.24 15.33 15.66 10.62
renren-2010 - - 78.10 82.97 22.47 21.53 - - 59.51 83.84 22.47 21.29

Table 2: Runtime (in seconds) of six applications in memory. ’-’ indicates incompletion due to running out of memory.

PR CC
Graph GraphChi Garaph GraphChi Garaph

In-memory (10 iters for PR, convergence for CC.)
uk-2007@1M 2.58 0.16 12.47 0.20
uk-2014-host 4.55 0.22 21.17 0.24
enwiki-2013 7.39 0.39 27.46 0.46
gsh-2015-tpd 39.69 2.42 179.27 1.21
twitter-2010 253.45 6.13 618.58 3.32
sk-2005 - 6.83 - 4.74
renren-2010 - 20.89 - 8.55

Secondary Storage (5 iters for PR and CC.)
uk-union 899 161 2558 157
gsh-2015 11595 2269 13897 1383

Table 3: Runtime (in seconds) of PR and CC in memory
and secondary storages (three SATA SSDs). ’-’ indicates
incompletion due to running out of memory.

As uk-union and gsh-2015 datasets can be only placed
in secondary storage, CuSha, Ligra and Gemini cannot
run any applications due to the limit of memory capacity.

We compare Garaph with GraphChi in two ways:
(1) For datasets that can be fit in memory, we redirect
GraphChi’s I/O operations from secondary storages to
memory by modifing its open-source code. We run PR
for 10 iterations and CC till convergence. (2) For datasets
that need the extension of secondary storage, we run
GraphChi on a Raid-0 provided by three SATA SSDs.
In this case, Garaph also uses the same SSDs managed
by the dispatcher. We only run 5 iterations for PR and
CC on large-scale graphs such as uk-union and gsh-2015
that are very time-consuming to get convergence.

Table 3 shows that Garaph outperforms GraphChi in

all cases. The experiments of in-memory graphs demon-
strate that Garaph’s computation engine is more efficient
than GraphChi. There are three reasons why Garaph out-
performs GraphChi for SSD-based computation: First,
benefiting from the the compressed graph representation,
Garaph can use less space to store graph data. Second,
GraphChi needs both read data from SSDs and write data
to SSDs, which may also cause I/O conflicts. Garaph on-
ly reads data from SSDs. Futher, in SSDs, the sequential
read speed is much faster than the sequential write speed.
Finally, according to our tests, Garaph’s disk manager
is more efficient than the RAID-0 supported by the raid
card which is not linear scalable. Note this is a just pre-
liminary result of adopting the secondary storages. We
shall try PCIe SSDs or NVMs in the future work.

6.2 Customized Replication

In this section, we evaluate the performance of the cus-
tomized replication on the GPU side. We partition the sk-
2005 dataset into 33 subgraphs (pages) of similar sizes
but different topological structures. We run PR on these
pages to evaluate the runtime (computation time only) of
each page by using the CUDA toolkit profiler.

Figure 8 shows the runtime of each page in one iter-
ation with/without replication. Without replication, the
processing time of pages varies significantly, where the
slowest one is about 45.17x slower than the fastest one.
We also find that the correlation between the runtime
and the maximum degree of individual pages is 0.9853,
which implies that the time of processing a page is main-

USENIX Association 2017 USENIX Annual Technical Conference 203

0 5 10 15 20 25 30

Page No.

0

500

1000

1500

2000

2500

T
im

e
 (

m
s
)

No Replication

Customized Replication

Figure 8: Per-page runtime (computation time only) of PR on
the sk-2005 dataset

0 5 10 15 20 25 30 35

Replication Factor

0

20

40

60

80

100

T
im

e
 (

s
)

Fixed Replication Factor

Customized Replication

14.87

8.6

Figure 9: Runtime with different replication factors, the
X-axis of customized replication is the average of Ri.

0 10 20 30 40

Iteration No.

0

2000

4000

6000

T
im

e
 (

m
s
) Notify-Pull

Pull

(a) SSSP: twitter-2010

0 10 20 30 40

Iteration No.

0

1

2

T
im

e
 (

m
s
)

10
4

Notify-Pull

Pull

(b) SSSP: renren-2010

0 5 10 15 20

Iteration No.

0

2000

4000

6000

T
im

e
 (

m
s
) Notify-Pull

Pull

(c) CC: twitter-2010

0 10 20 30 40

Iteration No.

0

1

2

T
im

e
 (

m
s
)

10
4

Notify-Pull

Pull

(d) CC: renren-2010

Figure 10: Runtime under notify-pull and pull modes, “o” indicates the iteration where Garaph switches modes.

ly impacted by the vertices of high degree. In contrast,
with the customized replication, the processing time of
pages is much more balanced and efficient, getting a
4.84x speedup on average (up to 32.15x), significantly
reducing the overall time.

We next show customized replication can gain a bet-
ter performance than a fixed replication factor. To do so,
we run 10 iterations PR on the sk-2005 dataset with the
fixed factor R ∈ {1,2,4,8,16,32} for the whole graph.
Figure 9 shows that the runtime (computation time only)
decreases at the beginning and increases with the grow-
ing of R. Customized Ri according to equation (2) gets
the best performance of 8.6s, getting 1.73x speedup than
the best one (14.87s) among all fixed factors.

6.3 Dual Modes of the CPU Kernel

Adaptive switching between pull and notify-pull modes
according to the density of active vertices improves the
performance of Garaph-C significantly. We propose an
experiment by forcing Garaph-C to run under the two
modes for each iteration respectively to illustrate the ne-
cessities of the dual-mode abstraction.

Figure 10 shows that the performance gap between
notify-pull and pull modes is quite significant. For SSSP,
the notify-pull mode outperforms the pull mode in most
iterations, except several iterations where most vertices
are updated. For CC, the pull mode only outperforms
the notify-pull mode at the first few iterations when most
of the vertices remain active. However, with switching
model proposed in Section 4.2, Garaph-C is able to adopt
the better mode for each iteration. We see that the switch
of Garaph-C occurs at the next iteration around the inter-
section of the two modes’ performance curves.

CuSha Ligra GraphChi Gemini Garaph
enwiki-2013 47.57 70.45 41.1 17.96 26.2
gsh-2015-tpd - 442 249 107.21 137.6
twitter-2010 - - 654 266.18 353.8

Table 4: Preprocessing Cost (in seconds) of PR

6.4 Scheduling Performance

To demonstrate the speedup of processing graphs on a
hybrid platform (compared to processing it on the host
only or the GPU only), we run SSSP and CC on twitter-
2010 and renren-2010 datasets under CPU-only, GPU-
only and hybrid for each iteration, respectively.

As Figure 11 shows, Garaph-H gains much better per-
formance by combing CPU and GPU kernels. For both
SSSP and CC, when a few vertices are active, Garaph-
H chooses to only use the CPU to process graphs with
notify-pull model. However, when most of vertices are
active, Garaph-H switches to pull mode in the CPU ker-
nel, and the GPU also joins in computation and acceler-
ates the processing significantly. In contrast, The runtime
of the Garaph-C incurs long processing time when most
of vertices are active, whereas Garaph-G remains con-
stant because the amount of computation does not change
in all iterations of SSSP and CC.

6.5 Preprocessing Cost

Finally, we evaluate the preprocessing cost of Garaph
compared to CuSha, Ligra, Gemini and GraphChi on
a RAID-0 provided by three SATA SSDs. Garaph and
GraphChi will write preprocessed data into secondary
storages. Garaph’s preprocessing is light-weight, which
only needs to scan the input data twice to build the CSC
and the CSR data. Table 4 shows the preprocessing cost

204 2017 USENIX Annual Technical Conference USENIX Association

0 10 20 30 40

Iteration No.

0

500

1000

1500

2000
T

im
e

 (
m

s
)

CPU

GPU

Hybrid

(a) SSSP: twitter-2010

0 10 20 30 40

Iteration No.

0

2000

4000

6000

8000

T
im

e
 (

m
s
)

CPU

GPU

Hybrid

(b) SSSP: renren-2010

0 5 10 15 20

Iteration No.

0

500

1000

1500

2000

T
im

e
 (

m
s
)

CPU

GPU

Hybrid

(c) CC: twitter-2010

0 10 20 30 40

Iteration No.

0

2000

4000

6000

8000

T
im

e
 (

m
s
)

CPU

GPU

Hybrid

(d) CC: renren-2010

Figure 11: Runtime under CPU-only, GPU-only and hybrid modes in two datasets.

of PR on three graphs. It is clear that Garaph’s prepro-
cessing is faster than CuSha, Ligra and GraphChi. As
Garaph needs to write preprocessed data to secondary
storages, Garaph’s preprocessing is slower than Gemini.

7 Related Works

In recent years, a large number of graph processing sys-
tems have been proposed [36, 28, 37, 7, 16, 11, 32, 29,
21, 17, 10, 2, 27, 22, 35, 33]. We mention here only those
most closely related to our work.

GPUs provide a massive amount of parallelism with
the potential to outperform CPUs. Numerous graph pro-
cessing systems [33, 16, 35, 31] have been proposed
to use GPUs for high-performance graph processing.
Medusa [35] is a generalized GPU-based graph process-
ing framework that focuses on abstractions for easy pro-
gramming and scaling to multiple GPUs. CuSha [16] pri-
marily focuses on exploring new graph representations
to allow faster graph processing. It uses two graph repre-
sentations G-Shards and Concatenated Windows to im-
prove coalesced memory access and GPU utilization. In
CuSha, vertices’ values are stored in shards and CuSha
needs a phase to write updated values to shards. This
design would incur significant data transfer cost between
GPU and CPU if it enxtened data to host memory. In
Garaph, updated vertices’ values are written to global
memory instead of shards. Further, CuSha incurs heavy
conflicts without any data replicaiton. However, Garaph
adopts the replication-based gather to reduce conflicts.
Futher, both Medusa and CuSha cannot process graphs
exceeding the GPU memory capacity.

To scale out GPU-accelerated graph processing,
TOTEM [8] is a processing engine that provides a con-
venient environment to implement graph algorithms on
hybrid CPU and GPU platforms. TOTEM can process
graphs whose size is smaller than the host memory ca-
pacity. gGraph [34] is another hybrid CPU-GPU system
which uses hard-disk drives (HDDs) as secondary stor-
ages. For load balancing, both systems initially partition
graph into subgraphs that are proportional to the process-
ing power of CPUs and GPUs.

However, existing GPU-accelerated systems cannot
fully utilize the GPU for processing large-scale graphs
due to ignoring heavy write contention caused by skewed

power-law degree distributions and properties of graph
algorithms. Garaph further exploits the replication and
dynamical scheduling to achieve the best performance on
the CPU/GPU hybrid platform.

Shared-memory graph processing systems provide ei-
ther a push-based [22, 30, 2, 15] or a pull-based mod-
el [21, 10, 11, 6, 7], or a switchable model [32, 12,
36]. Garaph modifies push/pull models of Ligra [32]
to notify-pull/pull models to achieve lock-free process-
ing. In particular, Ligra’s push operations are atom-
ic, whereas our notify-pull/pull model is lock-free with
edge-based partitioning. Also, Ligra’s critical switch-
ing parameter is set by experience, which may not be
the best parameter for different applications and datasets.
However, notify-pull/pull model is switched by the data-
driven model, and thus can achieve a better performance.

8 Conclusion

In this work, we designed a general graph processing
platform called Garaph which can efficiently process
large-scale graphs using both CPUs and GPUs on a sin-
gle machine. We design critical system components
such as replication-based GPU kernel, optimized CPU
kernel with edge-based partition and dual computation
modes, and dispatcher with dynamic CPU-GPU schedul-
ing. Our deployment and evaluation reveal demonstrate
that Garaph can fully explore both CPU and GPU par-
allelism for graph processing. Although Garaph is de-
signed for a single machine, the proposed techniques
could also be easily applied to distributed, CPU/GPU hy-
brid systems. Garaph focuses on systems with fast stor-
age (e.g., RAM, or NVM/PCIe-SSD arrary). However,
for enviorment with slow secondary storages (e.g., HDD-
based system), other optimizations on I/O of secondary
storages should be introduced to allivate the bottleneck.

Acknowledgements

Authors would like to thank Christopher J. Rossbach, our
shepherd, and the anonymous reviewers for their insight-
ful comments. This work was supported by the National
Natural Science Foundation under Grant No. 61472009
and Shenzhen Key Fundamental Research Projects under
Grant No. JCYJ20151014093505032.

USENIX Association 2017 USENIX Annual Technical Conference 205

References
[1] ABOU-RJEILI, A., AND KARYPIS, G. Multilevel algorithms

for partitioning power-law graphs. In Parallel and Distributed
Processing Symposium, 2006. IPDPS 2006. 20th International
(2006), IEEE, pp. 10–pp.

[2] AVERY, C. Giraph: Large-scale graph processing infrastructure
on hadoop. Proceedings of the Hadoop Summit. Santa Clara 11
(2011).

[3] BAKHODA, A., YUAN, G. L., FUNG, W. W., WONG, H., AND
AAMODT, T. M. Analyzing cuda workloads using a detailed
gpu simulator. In Performance Analysis of Systems and Software,
2009. ISPASS 2009. IEEE International Symposium on (2009),
IEEE, pp. 163–174.

[4] BOLDI, P., CODENOTTI, B., SANTINI, M., AND VIGNA, S.
Ubicrawler: A scalable fully distributed web crawler. Software:
Practice & Experience 34, 8 (2004), 711–726.

[5] BOLDI, P., MARINO, A., SANTINI, M., AND VIGNA, S. BUb-
iNG: Massive crawling for the masses. In Proceedings of the
Companion Publication of the 23rd International Conference on
World Wide Web (2014), International World Wide Web Confer-
ences Steering Committee, pp. 227–228.

[6] CHEN, R., DING, X., WANG, P., CHEN, H., ZANG, B., AND
GUAN, H. Computation and communication efficient graph pro-
cessing with distributed immutable view. In Proceedings of the
23rd international symposium on High-performance parallel and
distributed computing (2014), ACM, pp. 215–226.

[7] CHEN, R., SHI, J., CHEN, Y., AND CHEN, H. Powerlyra: Dif-
ferentiated graph computation and partitioning on skewed graphs.
In Proceedings of the Tenth European Conference on Computer
Systems (2015), ACM, p. 1.

[8] GHARAIBEH, A., REZA, T., SANTOS-NETO, E., COSTA, L. B.,
SALLINEN, S., AND RIPEANU, M. Efficient large-scale graph
processing on hybrid cpu and gpu systems. arXiv preprint arX-
iv:1312.3018 (2013).

[9] GOMEZ-LUNA, J., GONZALEZ-LINARES, J. M., BENITEZ, J.
I. B., AND MATA, N. G. Performance modeling of atomic addi-
tions on gpu scratchpad memory. IEEE Transactions on Parallel
and Distributed Systems 24, 11 (2013), 2273–2282.

[10] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND
GUESTRIN, C. Powergraph: Distributed graph-parallel compu-
tation on natural graphs. In OSDI (2012), vol. 12, p. 2.

[11] GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,
FRANKLIN, M. J., AND STOICA, I. Graphx: Graph processing
in a distributed dataflow framework. In OSDI (2014), vol. 14,
pp. 599–613.

[12] HAN, W., MIAO, Y., LI, K., WU, M., YANG, F., ZHOU, L.,
PRABHAKARAN, V., CHEN, W., AND CHEN, E. Chronos: a
graph engine for temporal graph analysis. In Proceedings of the
Ninth European Conference on Computer Systems (2014), ACM,
p. 1.

[13] HARRIS, M., ET AL. Optimizing parallel reduction in cuda.
NVIDIA Developer Technology 2, 4 (2007).

[14] INTEL. Intel ssd dc p3608 series product brief. Tech. rep., 2015.

[15] KHAYYAT, Z., AWARA, K., ALONAZI, A., JAMJOOM, H.,
WILLIAMS, D., AND KALNIS, P. Mizan: a system for dynamic
load balancing in large-scale graph processing. In Proceedings of
the 8th ACM European Conference on Computer Systems (2013),
ACM, pp. 169–182.

[16] KHORASANI, F., VORA, K., GUPTA, R., AND BHUYAN, L. N.
Cusha: vertex-centric graph processing on gpus. In Proceedings
of the 23rd international symposium on High-performance par-
allel and distributed computing (2014), ACM, pp. 239–252.

[17] KYROLA, A., BLELLOCH, G. E., GUESTRIN, C., ET AL.
Graphchi: Large-scale graph computation on just a pc. In OS-
DI (2012), vol. 12, pp. 31–46.

[18] LEHMBERG, O., MEUSEL, R., AND BIZER, C. Graph structure
in the web: Aggregated by pay-level domain. In Proceedings of
the 2014 ACM conference on Web science (2014), ACM, pp. 119–
128.

[19] LESKOVEC, J., AND KREVL, A. SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/
data, June 2014.

[20] LESKOVEC, J., LANG, K. J., DASGUPTA, A., AND MAHONEY,
M. W. Community structure in large networks: Natural clus-
ter sizes and the absence of large well-defined clusters. Internet
Mathematics 6, 1 (2009), 29–123.

[21] LOW, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., KY-
ROLA, A., AND HELLERSTEIN, J. M. Distributed graphlab: a
framework for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment 5, 8 (2012), 716–727.

[22] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:
a system for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Management
of data (2010), ACM, pp. 135–146.

[23] MISLOVE, A., MARCON, M., GUMMADI, K. P., DRUSCHEL,
P., AND BHATTACHARJEE, B. Measurement and Analysis of
Online Social Networks. In Proceedings of the 5th ACM/Usenix
Internet Measurement Conference (IMC’07) (San Diego, CA,
October 2007).

[24] NVIDIA. Kepler gk110 architecture whitepaper, v1.0. Tech. rep.,
2012.

[25] NVIDIA. CUDA C Programming Guide. nvidia, 2017.

[26] PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. The
pagerank citation ranking: Bringing order to the web. Tech. rep.,
Stanford InfoLab, 1999.

[27] PINGALI, K., NGUYEN, D., KULKARNI, M., BURTSCHER, M.,
HASSAAN, M. A., KALEEM, R., LEE, T.-H., LENHARTH, A.,
MANEVICH, R., MÉNDEZ-LOJO, M., ET AL. The tao of par-
allelism in algorithms. In ACM Sigplan Notices (2011), vol. 46,
ACM, pp. 12–25.

[28] ROY, A., BINDSCHAEDLER, L., MALICEVIC, J., AND
ZWAENEPOEL, W. Chaos: Scale-out graph processing from sec-
ondary storage. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (2015), ACM, pp. 410–424.

[29] ROY, A., MIHAILOVIC, I., AND ZWAENEPOEL, W. X-stream:
edge-centric graph processing using streaming partitions. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 472–488.

[30] SALIHOGLU, S., AND WIDOM, J. Gps: A graph processing
system. In Proceedings of the 25th International Conference on
Scientific and Statistical Database Management (2013), ACM,
p. 22.

[31] SEO, H., KIM, J., AND KIM, M.-S. Gstream: A graph stream-
ing processing method for large-scale graphs on gpus. In ACM
SIGPLAN Notices (2015), vol. 50, ACM, pp. 253–254.

[32] SHUN, J., AND BLELLOCH, G. E. Ligra: a lightweight graph
processing framework for shared memory. In ACM Sigplan No-
tices (2013), vol. 48, ACM, pp. 135–146.

[33] WANG, Y., DAVIDSON, A., PAN, Y., WU, Y., RIFFEL, A., AND
OWENS, J. D. Gunrock: A high-performance graph processing
library on the gpu. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(2016), ACM, p. 11.

206 2017 USENIX Annual Technical Conference USENIX Association

[34] ZHANG, T., ZHANG, J., SHU, W., WU, M.-Y., AND LIANG, X.
Efficient graph computation on hybrid cpu and gpu systems. The
Journal of Supercomputing 71, 4 (2015), 1563–1586.

[35] ZHONG, J., AND HE, B. Medusa: Simplified graph processing
on gpus. IEEE Transactions on Parallel and Distributed Systems
25, 6 (2014), 1543–1552.

[36] ZHU, X., CHEN, W., ZHENG, W., AND MA, X. Gemini: A
computation-centric distributed graph processing system. In 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16)(Savannah, GA (2016).

[37] ZHU, X., HAN, W., AND CHEN, W. Gridgraph: Large-scale
graph processing on a single machine using 2-level hierarchical
partitioning. In USENIX Annual Technical Conference (2015),
pp. 375–386.

USENIX Association 2017 USENIX Annual Technical Conference 207

