Skip to content
Snippets Groups Projects
pako.js 233 KiB
Newer Older
Recolic's avatar
.
Recolic committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

/*! pako 2.1.0 https://github.com/nodeca/pako @license (MIT AND Zlib) */
(function (global, factory) {
  typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
  typeof define === 'function' && define.amd ? define(['exports'], factory) :
  (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.pako = {}));
})(this, (function (exports) { 'use strict';

  // (C) 1995-2013 Jean-loup Gailly and Mark Adler
  // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
  //
  // This software is provided 'as-is', without any express or implied
  // warranty. In no event will the authors be held liable for any damages
  // arising from the use of this software.
  //
  // Permission is granted to anyone to use this software for any purpose,
  // including commercial applications, and to alter it and redistribute it
  // freely, subject to the following restrictions:
  //
  // 1. The origin of this software must not be misrepresented; you must not
  //   claim that you wrote the original software. If you use this software
  //   in a product, an acknowledgment in the product documentation would be
  //   appreciated but is not required.
  // 2. Altered source versions must be plainly marked as such, and must not be
  //   misrepresented as being the original software.
  // 3. This notice may not be removed or altered from any source distribution.

  /* eslint-disable space-unary-ops */

  /* Public constants ==========================================================*/
  /* ===========================================================================*/


  //const Z_FILTERED          = 1;
  //const Z_HUFFMAN_ONLY      = 2;
  //const Z_RLE               = 3;
  const Z_FIXED$1               = 4;
  //const Z_DEFAULT_STRATEGY  = 0;

  /* Possible values of the data_type field (though see inflate()) */
  const Z_BINARY              = 0;
  const Z_TEXT                = 1;
  //const Z_ASCII             = 1; // = Z_TEXT
  const Z_UNKNOWN$1             = 2;

  /*============================================================================*/


  function zero$1(buf) { let len = buf.length; while (--len >= 0) { buf[len] = 0; } }

  // From zutil.h

  const STORED_BLOCK = 0;
  const STATIC_TREES = 1;
  const DYN_TREES    = 2;
  /* The three kinds of block type */

  const MIN_MATCH$1    = 3;
  const MAX_MATCH$1    = 258;
  /* The minimum and maximum match lengths */

  // From deflate.h
  /* ===========================================================================
   * Internal compression state.
   */

  const LENGTH_CODES$1  = 29;
  /* number of length codes, not counting the special END_BLOCK code */

  const LITERALS$1      = 256;
  /* number of literal bytes 0..255 */

  const L_CODES$1       = LITERALS$1 + 1 + LENGTH_CODES$1;
  /* number of Literal or Length codes, including the END_BLOCK code */

  const D_CODES$1       = 30;
  /* number of distance codes */

  const BL_CODES$1      = 19;
  /* number of codes used to transfer the bit lengths */

  const HEAP_SIZE$1     = 2 * L_CODES$1 + 1;
  /* maximum heap size */

  const MAX_BITS$1      = 15;
  /* All codes must not exceed MAX_BITS bits */

  const Buf_size      = 16;
  /* size of bit buffer in bi_buf */


  /* ===========================================================================
   * Constants
   */

  const MAX_BL_BITS = 7;
  /* Bit length codes must not exceed MAX_BL_BITS bits */

  const END_BLOCK   = 256;
  /* end of block literal code */

  const REP_3_6     = 16;
  /* repeat previous bit length 3-6 times (2 bits of repeat count) */

  const REPZ_3_10   = 17;
  /* repeat a zero length 3-10 times  (3 bits of repeat count) */

  const REPZ_11_138 = 18;
  /* repeat a zero length 11-138 times  (7 bits of repeat count) */

  /* eslint-disable comma-spacing,array-bracket-spacing */
  const extra_lbits =   /* extra bits for each length code */
    new Uint8Array([0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]);

  const extra_dbits =   /* extra bits for each distance code */
    new Uint8Array([0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]);

  const extra_blbits =  /* extra bits for each bit length code */
    new Uint8Array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]);

  const bl_order =
    new Uint8Array([16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]);
  /* eslint-enable comma-spacing,array-bracket-spacing */

  /* The lengths of the bit length codes are sent in order of decreasing
   * probability, to avoid transmitting the lengths for unused bit length codes.
   */

  /* ===========================================================================
   * Local data. These are initialized only once.
   */

  // We pre-fill arrays with 0 to avoid uninitialized gaps

  const DIST_CODE_LEN = 512; /* see definition of array dist_code below */

  // !!!! Use flat array instead of structure, Freq = i*2, Len = i*2+1
  const static_ltree  = new Array((L_CODES$1 + 2) * 2);
  zero$1(static_ltree);
  /* The static literal tree. Since the bit lengths are imposed, there is no
   * need for the L_CODES extra codes used during heap construction. However
   * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
   * below).
   */

  const static_dtree  = new Array(D_CODES$1 * 2);
  zero$1(static_dtree);
  /* The static distance tree. (Actually a trivial tree since all codes use
   * 5 bits.)
   */

  const _dist_code    = new Array(DIST_CODE_LEN);
  zero$1(_dist_code);
  /* Distance codes. The first 256 values correspond to the distances
   * 3 .. 258, the last 256 values correspond to the top 8 bits of
   * the 15 bit distances.
   */

  const _length_code  = new Array(MAX_MATCH$1 - MIN_MATCH$1 + 1);
  zero$1(_length_code);
  /* length code for each normalized match length (0 == MIN_MATCH) */

  const base_length   = new Array(LENGTH_CODES$1);
  zero$1(base_length);
  /* First normalized length for each code (0 = MIN_MATCH) */

  const base_dist     = new Array(D_CODES$1);
  zero$1(base_dist);
  /* First normalized distance for each code (0 = distance of 1) */


  function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) {

    this.static_tree  = static_tree;  /* static tree or NULL */
    this.extra_bits   = extra_bits;   /* extra bits for each code or NULL */
    this.extra_base   = extra_base;   /* base index for extra_bits */
    this.elems        = elems;        /* max number of elements in the tree */
    this.max_length   = max_length;   /* max bit length for the codes */

    // show if `static_tree` has data or dummy - needed for monomorphic objects
    this.has_stree    = static_tree && static_tree.length;
  }


  let static_l_desc;
  let static_d_desc;
  let static_bl_desc;


  function TreeDesc(dyn_tree, stat_desc) {
    this.dyn_tree = dyn_tree;     /* the dynamic tree */
    this.max_code = 0;            /* largest code with non zero frequency */
    this.stat_desc = stat_desc;   /* the corresponding static tree */
  }



  const d_code = (dist) => {

    return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)];
  };


  /* ===========================================================================
   * Output a short LSB first on the stream.
   * IN assertion: there is enough room in pendingBuf.
   */
  const put_short = (s, w) => {
  //    put_byte(s, (uch)((w) & 0xff));
  //    put_byte(s, (uch)((ush)(w) >> 8));
    s.pending_buf[s.pending++] = (w) & 0xff;
    s.pending_buf[s.pending++] = (w >>> 8) & 0xff;
  };


  /* ===========================================================================
   * Send a value on a given number of bits.
   * IN assertion: length <= 16 and value fits in length bits.
   */
  const send_bits = (s, value, length) => {

    if (s.bi_valid > (Buf_size - length)) {
      s.bi_buf |= (value << s.bi_valid) & 0xffff;
      put_short(s, s.bi_buf);
      s.bi_buf = value >> (Buf_size - s.bi_valid);
      s.bi_valid += length - Buf_size;
    } else {
      s.bi_buf |= (value << s.bi_valid) & 0xffff;
      s.bi_valid += length;
    }
  };


  const send_code = (s, c, tree) => {

    send_bits(s, tree[c * 2]/*.Code*/, tree[c * 2 + 1]/*.Len*/);
  };


  /* ===========================================================================
   * Reverse the first len bits of a code, using straightforward code (a faster
   * method would use a table)
   * IN assertion: 1 <= len <= 15
   */
  const bi_reverse = (code, len) => {

    let res = 0;
    do {
      res |= code & 1;
      code >>>= 1;
      res <<= 1;
    } while (--len > 0);
    return res >>> 1;
  };


  /* ===========================================================================
   * Flush the bit buffer, keeping at most 7 bits in it.
   */
  const bi_flush = (s) => {

    if (s.bi_valid === 16) {
      put_short(s, s.bi_buf);
      s.bi_buf = 0;
      s.bi_valid = 0;

    } else if (s.bi_valid >= 8) {
      s.pending_buf[s.pending++] = s.bi_buf & 0xff;
      s.bi_buf >>= 8;
      s.bi_valid -= 8;
    }
  };


  /* ===========================================================================
   * Compute the optimal bit lengths for a tree and update the total bit length
   * for the current block.
   * IN assertion: the fields freq and dad are set, heap[heap_max] and
   *    above are the tree nodes sorted by increasing frequency.
   * OUT assertions: the field len is set to the optimal bit length, the
   *     array bl_count contains the frequencies for each bit length.
   *     The length opt_len is updated; static_len is also updated if stree is
   *     not null.
   */
  const gen_bitlen = (s, desc) => {
  //    deflate_state *s;
  //    tree_desc *desc;    /* the tree descriptor */

    const tree            = desc.dyn_tree;
    const max_code        = desc.max_code;
    const stree           = desc.stat_desc.static_tree;
    const has_stree       = desc.stat_desc.has_stree;
    const extra           = desc.stat_desc.extra_bits;
    const base            = desc.stat_desc.extra_base;
    const max_length      = desc.stat_desc.max_length;
    let h;              /* heap index */
    let n, m;           /* iterate over the tree elements */
    let bits;           /* bit length */
    let xbits;          /* extra bits */
    let f;              /* frequency */
    let overflow = 0;   /* number of elements with bit length too large */

    for (bits = 0; bits <= MAX_BITS$1; bits++) {
      s.bl_count[bits] = 0;
    }

    /* In a first pass, compute the optimal bit lengths (which may
     * overflow in the case of the bit length tree).
     */
    tree[s.heap[s.heap_max] * 2 + 1]/*.Len*/ = 0; /* root of the heap */

    for (h = s.heap_max + 1; h < HEAP_SIZE$1; h++) {
      n = s.heap[h];
      bits = tree[tree[n * 2 + 1]/*.Dad*/ * 2 + 1]/*.Len*/ + 1;
      if (bits > max_length) {
        bits = max_length;
        overflow++;
      }
      tree[n * 2 + 1]/*.Len*/ = bits;
      /* We overwrite tree[n].Dad which is no longer needed */

      if (n > max_code) { continue; } /* not a leaf node */

      s.bl_count[bits]++;
      xbits = 0;
      if (n >= base) {
        xbits = extra[n - base];
      }
      f = tree[n * 2]/*.Freq*/;
      s.opt_len += f * (bits + xbits);
      if (has_stree) {
        s.static_len += f * (stree[n * 2 + 1]/*.Len*/ + xbits);
      }
    }
    if (overflow === 0) { return; }

    // Tracev((stderr,"\nbit length overflow\n"));
    /* This happens for example on obj2 and pic of the Calgary corpus */

    /* Find the first bit length which could increase: */
    do {
      bits = max_length - 1;
      while (s.bl_count[bits] === 0) { bits--; }
      s.bl_count[bits]--;      /* move one leaf down the tree */
      s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
      s.bl_count[max_length]--;
      /* The brother of the overflow item also moves one step up,
       * but this does not affect bl_count[max_length]
       */
      overflow -= 2;
    } while (overflow > 0);

    /* Now recompute all bit lengths, scanning in increasing frequency.
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
     * lengths instead of fixing only the wrong ones. This idea is taken
     * from 'ar' written by Haruhiko Okumura.)
     */
    for (bits = max_length; bits !== 0; bits--) {
      n = s.bl_count[bits];
      while (n !== 0) {
        m = s.heap[--h];
        if (m > max_code) { continue; }
        if (tree[m * 2 + 1]/*.Len*/ !== bits) {
          // Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
          s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
          tree[m * 2 + 1]/*.Len*/ = bits;
        }
        n--;
      }
    }
  };


  /* ===========================================================================
   * Generate the codes for a given tree and bit counts (which need not be
   * optimal).
   * IN assertion: the array bl_count contains the bit length statistics for
   * the given tree and the field len is set for all tree elements.
   * OUT assertion: the field code is set for all tree elements of non
   *     zero code length.
   */
  const gen_codes = (tree, max_code, bl_count) => {
  //    ct_data *tree;             /* the tree to decorate */
  //    int max_code;              /* largest code with non zero frequency */
  //    ushf *bl_count;            /* number of codes at each bit length */

    const next_code = new Array(MAX_BITS$1 + 1); /* next code value for each bit length */
    let code = 0;              /* running code value */
    let bits;                  /* bit index */
    let n;                     /* code index */

    /* The distribution counts are first used to generate the code values
     * without bit reversal.
     */
    for (bits = 1; bits <= MAX_BITS$1; bits++) {
      code = (code + bl_count[bits - 1]) << 1;
      next_code[bits] = code;
    }
    /* Check that the bit counts in bl_count are consistent. The last code
     * must be all ones.
     */
    //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
    //        "inconsistent bit counts");
    //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));

    for (n = 0;  n <= max_code; n++) {
      let len = tree[n * 2 + 1]/*.Len*/;
      if (len === 0) { continue; }
      /* Now reverse the bits */
      tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);

      //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
      //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
    }
  };


  /* ===========================================================================
   * Initialize the various 'constant' tables.
   */
  const tr_static_init = () => {

    let n;        /* iterates over tree elements */
    let bits;     /* bit counter */
    let length;   /* length value */
    let code;     /* code value */
    let dist;     /* distance index */
    const bl_count = new Array(MAX_BITS$1 + 1);
    /* number of codes at each bit length for an optimal tree */

    // do check in _tr_init()
    //if (static_init_done) return;

    /* For some embedded targets, global variables are not initialized: */
  /*#ifdef NO_INIT_GLOBAL_POINTERS
    static_l_desc.static_tree = static_ltree;
    static_l_desc.extra_bits = extra_lbits;
    static_d_desc.static_tree = static_dtree;
    static_d_desc.extra_bits = extra_dbits;
    static_bl_desc.extra_bits = extra_blbits;
  #endif*/

    /* Initialize the mapping length (0..255) -> length code (0..28) */
    length = 0;
    for (code = 0; code < LENGTH_CODES$1 - 1; code++) {
      base_length[code] = length;
      for (n = 0; n < (1 << extra_lbits[code]); n++) {
        _length_code[length++] = code;
      }
    }
    //Assert (length == 256, "tr_static_init: length != 256");
    /* Note that the length 255 (match length 258) can be represented
     * in two different ways: code 284 + 5 bits or code 285, so we
     * overwrite length_code[255] to use the best encoding:
     */
    _length_code[length - 1] = code;

    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
    dist = 0;
    for (code = 0; code < 16; code++) {
      base_dist[code] = dist;
      for (n = 0; n < (1 << extra_dbits[code]); n++) {
        _dist_code[dist++] = code;
      }
    }
    //Assert (dist == 256, "tr_static_init: dist != 256");
    dist >>= 7; /* from now on, all distances are divided by 128 */
    for (; code < D_CODES$1; code++) {
      base_dist[code] = dist << 7;
      for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
        _dist_code[256 + dist++] = code;
      }
    }
    //Assert (dist == 256, "tr_static_init: 256+dist != 512");

    /* Construct the codes of the static literal tree */
    for (bits = 0; bits <= MAX_BITS$1; bits++) {
      bl_count[bits] = 0;
    }

    n = 0;
    while (n <= 143) {
      static_ltree[n * 2 + 1]/*.Len*/ = 8;
      n++;
      bl_count[8]++;
    }
    while (n <= 255) {
      static_ltree[n * 2 + 1]/*.Len*/ = 9;
      n++;
      bl_count[9]++;
    }
    while (n <= 279) {
      static_ltree[n * 2 + 1]/*.Len*/ = 7;
      n++;
      bl_count[7]++;
    }
    while (n <= 287) {
      static_ltree[n * 2 + 1]/*.Len*/ = 8;
      n++;
      bl_count[8]++;
    }
    /* Codes 286 and 287 do not exist, but we must include them in the
     * tree construction to get a canonical Huffman tree (longest code
     * all ones)
     */
    gen_codes(static_ltree, L_CODES$1 + 1, bl_count);

    /* The static distance tree is trivial: */
    for (n = 0; n < D_CODES$1; n++) {
      static_dtree[n * 2 + 1]/*.Len*/ = 5;
      static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
    }

    // Now data ready and we can init static trees
    static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS$1 + 1, L_CODES$1, MAX_BITS$1);
    static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES$1, MAX_BITS$1);
    static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES$1, MAX_BL_BITS);

    //static_init_done = true;
  };


  /* ===========================================================================
   * Initialize a new block.
   */
  const init_block = (s) => {

    let n; /* iterates over tree elements */

    /* Initialize the trees. */
    for (n = 0; n < L_CODES$1;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
    for (n = 0; n < D_CODES$1;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
    for (n = 0; n < BL_CODES$1; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }

    s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
    s.opt_len = s.static_len = 0;
    s.sym_next = s.matches = 0;
  };


  /* ===========================================================================
   * Flush the bit buffer and align the output on a byte boundary
   */
  const bi_windup = (s) =>
  {
    if (s.bi_valid > 8) {
      put_short(s, s.bi_buf);
    } else if (s.bi_valid > 0) {
      //put_byte(s, (Byte)s->bi_buf);
      s.pending_buf[s.pending++] = s.bi_buf;
    }
    s.bi_buf = 0;
    s.bi_valid = 0;
  };

  /* ===========================================================================
   * Compares to subtrees, using the tree depth as tie breaker when
   * the subtrees have equal frequency. This minimizes the worst case length.
   */
  const smaller = (tree, n, m, depth) => {

    const _n2 = n * 2;
    const _m2 = m * 2;
    return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
           (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
  };

  /* ===========================================================================
   * Restore the heap property by moving down the tree starting at node k,
   * exchanging a node with the smallest of its two sons if necessary, stopping
   * when the heap property is re-established (each father smaller than its
   * two sons).
   */
  const pqdownheap = (s, tree, k) => {
  //    deflate_state *s;
  //    ct_data *tree;  /* the tree to restore */
  //    int k;               /* node to move down */

    const v = s.heap[k];
    let j = k << 1;  /* left son of k */
    while (j <= s.heap_len) {
      /* Set j to the smallest of the two sons: */
      if (j < s.heap_len &&
        smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
        j++;
      }
      /* Exit if v is smaller than both sons */
      if (smaller(tree, v, s.heap[j], s.depth)) { break; }

      /* Exchange v with the smallest son */
      s.heap[k] = s.heap[j];
      k = j;

      /* And continue down the tree, setting j to the left son of k */
      j <<= 1;
    }
    s.heap[k] = v;
  };


  // inlined manually
  // const SMALLEST = 1;

  /* ===========================================================================
   * Send the block data compressed using the given Huffman trees
   */
  const compress_block = (s, ltree, dtree) => {
  //    deflate_state *s;
  //    const ct_data *ltree; /* literal tree */
  //    const ct_data *dtree; /* distance tree */

    let dist;           /* distance of matched string */
    let lc;             /* match length or unmatched char (if dist == 0) */
    let sx = 0;         /* running index in sym_buf */
    let code;           /* the code to send */
    let extra;          /* number of extra bits to send */

    if (s.sym_next !== 0) {
      do {
        dist = s.pending_buf[s.sym_buf + sx++] & 0xff;
        dist += (s.pending_buf[s.sym_buf + sx++] & 0xff) << 8;
        lc = s.pending_buf[s.sym_buf + sx++];
        if (dist === 0) {
          send_code(s, lc, ltree); /* send a literal byte */
          //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
        } else {
          /* Here, lc is the match length - MIN_MATCH */
          code = _length_code[lc];
          send_code(s, code + LITERALS$1 + 1, ltree); /* send the length code */
          extra = extra_lbits[code];
          if (extra !== 0) {
            lc -= base_length[code];
            send_bits(s, lc, extra);       /* send the extra length bits */
          }
          dist--; /* dist is now the match distance - 1 */
          code = d_code(dist);
          //Assert (code < D_CODES, "bad d_code");

          send_code(s, code, dtree);       /* send the distance code */
          extra = extra_dbits[code];
          if (extra !== 0) {
            dist -= base_dist[code];
            send_bits(s, dist, extra);   /* send the extra distance bits */
          }
        } /* literal or match pair ? */

        /* Check that the overlay between pending_buf and sym_buf is ok: */
        //Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");

      } while (sx < s.sym_next);
    }

    send_code(s, END_BLOCK, ltree);
  };


  /* ===========================================================================
   * Construct one Huffman tree and assigns the code bit strings and lengths.
   * Update the total bit length for the current block.
   * IN assertion: the field freq is set for all tree elements.
   * OUT assertions: the fields len and code are set to the optimal bit length
   *     and corresponding code. The length opt_len is updated; static_len is
   *     also updated if stree is not null. The field max_code is set.
   */
  const build_tree = (s, desc) => {
  //    deflate_state *s;
  //    tree_desc *desc; /* the tree descriptor */

    const tree     = desc.dyn_tree;
    const stree    = desc.stat_desc.static_tree;
    const has_stree = desc.stat_desc.has_stree;
    const elems    = desc.stat_desc.elems;
    let n, m;          /* iterate over heap elements */
    let max_code = -1; /* largest code with non zero frequency */
    let node;          /* new node being created */

    /* Construct the initial heap, with least frequent element in
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
     * heap[0] is not used.
     */
    s.heap_len = 0;
    s.heap_max = HEAP_SIZE$1;

    for (n = 0; n < elems; n++) {
      if (tree[n * 2]/*.Freq*/ !== 0) {
        s.heap[++s.heap_len] = max_code = n;
        s.depth[n] = 0;

      } else {
        tree[n * 2 + 1]/*.Len*/ = 0;
      }
    }

    /* The pkzip format requires that at least one distance code exists,
     * and that at least one bit should be sent even if there is only one
     * possible code. So to avoid special checks later on we force at least
     * two codes of non zero frequency.
     */
    while (s.heap_len < 2) {
      node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
      tree[node * 2]/*.Freq*/ = 1;
      s.depth[node] = 0;
      s.opt_len--;

      if (has_stree) {
        s.static_len -= stree[node * 2 + 1]/*.Len*/;
      }
      /* node is 0 or 1 so it does not have extra bits */
    }
    desc.max_code = max_code;

    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
     * establish sub-heaps of increasing lengths:
     */
    for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }

    /* Construct the Huffman tree by repeatedly combining the least two
     * frequent nodes.
     */
    node = elems;              /* next internal node of the tree */
    do {
      //pqremove(s, tree, n);  /* n = node of least frequency */
      /*** pqremove ***/
      n = s.heap[1/*SMALLEST*/];
      s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
      pqdownheap(s, tree, 1/*SMALLEST*/);
      /***/

      m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */

      s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
      s.heap[--s.heap_max] = m;

      /* Create a new node father of n and m */
      tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
      s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
      tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;

      /* and insert the new node in the heap */
      s.heap[1/*SMALLEST*/] = node++;
      pqdownheap(s, tree, 1/*SMALLEST*/);

    } while (s.heap_len >= 2);

    s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];

    /* At this point, the fields freq and dad are set. We can now
     * generate the bit lengths.
     */
    gen_bitlen(s, desc);

    /* The field len is now set, we can generate the bit codes */
    gen_codes(tree, max_code, s.bl_count);
  };


  /* ===========================================================================
   * Scan a literal or distance tree to determine the frequencies of the codes
   * in the bit length tree.
   */
  const scan_tree = (s, tree, max_code) => {
  //    deflate_state *s;
  //    ct_data *tree;   /* the tree to be scanned */
  //    int max_code;    /* and its largest code of non zero frequency */

    let n;                     /* iterates over all tree elements */
    let prevlen = -1;          /* last emitted length */
    let curlen;                /* length of current code */

    let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */

    let count = 0;             /* repeat count of the current code */
    let max_count = 7;         /* max repeat count */
    let min_count = 4;         /* min repeat count */

    if (nextlen === 0) {
      max_count = 138;
      min_count = 3;
    }
    tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */

    for (n = 0; n <= max_code; n++) {
      curlen = nextlen;
      nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;

      if (++count < max_count && curlen === nextlen) {
        continue;

      } else if (count < min_count) {
        s.bl_tree[curlen * 2]/*.Freq*/ += count;

      } else if (curlen !== 0) {

        if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
        s.bl_tree[REP_3_6 * 2]/*.Freq*/++;

      } else if (count <= 10) {
        s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;

      } else {
        s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
      }

      count = 0;
      prevlen = curlen;

      if (nextlen === 0) {
        max_count = 138;
        min_count = 3;

      } else if (curlen === nextlen) {
        max_count = 6;
        min_count = 3;

      } else {
        max_count = 7;
        min_count = 4;
      }
    }
  };


  /* ===========================================================================
   * Send a literal or distance tree in compressed form, using the codes in
   * bl_tree.
   */
  const send_tree = (s, tree, max_code) => {
  //    deflate_state *s;
  //    ct_data *tree; /* the tree to be scanned */
  //    int max_code;       /* and its largest code of non zero frequency */

    let n;                     /* iterates over all tree elements */
    let prevlen = -1;          /* last emitted length */
    let curlen;                /* length of current code */

    let nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */

    let count = 0;             /* repeat count of the current code */
    let max_count = 7;         /* max repeat count */
    let min_count = 4;         /* min repeat count */

    /* tree[max_code+1].Len = -1; */  /* guard already set */
    if (nextlen === 0) {
      max_count = 138;
      min_count = 3;
    }

    for (n = 0; n <= max_code; n++) {
      curlen = nextlen;
      nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;

      if (++count < max_count && curlen === nextlen) {
        continue;

      } else if (count < min_count) {
        do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);

      } else if (curlen !== 0) {
        if (curlen !== prevlen) {
          send_code(s, curlen, s.bl_tree);
          count--;
        }
        //Assert(count >= 3 && count <= 6, " 3_6?");
        send_code(s, REP_3_6, s.bl_tree);
        send_bits(s, count - 3, 2);

      } else if (count <= 10) {
        send_code(s, REPZ_3_10, s.bl_tree);
        send_bits(s, count - 3, 3);

      } else {
        send_code(s, REPZ_11_138, s.bl_tree);
        send_bits(s, count - 11, 7);
      }

      count = 0;
      prevlen = curlen;
      if (nextlen === 0) {
        max_count = 138;
        min_count = 3;

      } else if (curlen === nextlen) {
        max_count = 6;
        min_count = 3;

      } else {
        max_count = 7;
        min_count = 4;
      }
    }
  };


  /* ===========================================================================
   * Construct the Huffman tree for the bit lengths and return the index in
   * bl_order of the last bit length code to send.
   */
  const build_bl_tree = (s) => {

    let max_blindex;  /* index of last bit length code of non zero freq */

    /* Determine the bit length frequencies for literal and distance trees */
    scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
    scan_tree(s, s.dyn_dtree, s.d_desc.max_code);

    /* Build the bit length tree: */
    build_tree(s, s.bl_desc);
    /* opt_len now includes the length of the tree representations, except
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
     */

    /* Determine the number of bit length codes to send. The pkzip format
     * requires that at least 4 bit length codes be sent. (appnote.txt says
     * 3 but the actual value used is 4.)
     */
    for (max_blindex = BL_CODES$1 - 1; max_blindex >= 3; max_blindex--) {
      if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
        break;
      }
    }
    /* Update opt_len to include the bit length tree and counts */
    s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
    //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
    //        s->opt_len, s->static_len));

    return max_blindex;
  };


  /* ===========================================================================
   * Send the header for a block using dynamic Huffman trees: the counts, the
   * lengths of the bit length codes, the literal tree and the distance tree.
   * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   */
  const send_all_trees = (s, lcodes, dcodes, blcodes) => {
  //    deflate_state *s;
  //    int lcodes, dcodes, blcodes; /* number of codes for each tree */

    let rank;                    /* index in bl_order */

    //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
    //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
    //        "too many codes");
    //Tracev((stderr, "\nbl counts: "));
    send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
    send_bits(s, dcodes - 1,   5);
    send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */
    for (rank = 0; rank < blcodes; rank++) {
      //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
      send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
    }
    //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));

    send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
    //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));

    send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
    //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
  };


  /* ===========================================================================
   * Check if the data type is TEXT or BINARY, using the following algorithm:
   * - TEXT if the two conditions below are satisfied:
   *    a) There are no non-portable control characters belonging to the
   *       "block list" (0..6, 14..25, 28..31).
   *    b) There is at least one printable character belonging to the
   *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
   * - BINARY otherwise.
   * - The following partially-portable control characters form a
   *   "gray list" that is ignored in this detection algorithm:
   *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
   * IN assertion: the fields Freq of dyn_ltree are set.
   */
  const detect_data_type = (s) => {
    /* block_mask is the bit mask of block-listed bytes
     * set bits 0..6, 14..25, and 28..31
     * 0xf3ffc07f = binary 11110011111111111100000001111111
     */
    let block_mask = 0xf3ffc07f;
    let n;

    /* Check for non-textual ("block-listed") bytes. */
    for (n = 0; n <= 31; n++, block_mask >>>= 1) {
      if ((block_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
        return Z_BINARY;
      }
    }

    /* Check for textual ("allow-listed") bytes. */
    if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
        s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
      return Z_TEXT;
    }
    for (n = 32; n < LITERALS$1; n++) {
      if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
        return Z_TEXT;
      }
    }