Skip to content
Snippets Groups Projects
Commit 4cfab222 authored by Recolic Keghart's avatar Recolic Keghart
Browse files

report section 1.2 done

parent a9e5fbc8
No related branches found
No related tags found
No related merge requests found
进度记录:
TODOS
translate.doc提交前去windows整理格式
No preview for this file type
[1] Apache flink. https://flink.apache.org/. Accessed: 2016-10-18.
[2] Cusp library. https://developer.nvidia.com/cusp. Accessed: 2017-03-25.
[3] cusparse. https://developer.nvidia.com/cusparse. Accessed: 2016-11-09.
[4] CUDA UnBound (CUB) library. https://nvlabs.github.io/cub/, 2015.
[5] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and description: a survey. Data Min. Knowl. Discov., 29(3):626–688, 2015.
[6] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sadayappan. Fast sparse matrix-vector multiplication on gpus for graph applications. In SC, pages 781–792, 2014.
[7] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan. An efficient two-dimensional blocking strategy for sparse matrix-vector multiplication on gpus. In ICS, pages 273–282, 2014.
[8] D. A. Bader, J. Berry, A. Amos-Binks, D. Chavarrı́a-Miranda, C. Hastings, K. Madduri, and S. C. Poulos. Stinger: Spatio-temporal interaction networks and graphs (sting) extensible representation. Georgia Institute of Technology, Tech. Rep, 2009.
[9] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA. Technical Report NVR-2008-004, NVIDIA Corporation, 2008.
[10] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious b-trees. SIAM J. Comput., 35(2):341–358, 2005.
[11] M. A. Bender and H. Hu. An adaptive packed-memory array. ACM Trans. Database Syst., 32(4), 2007.
[12] L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D. Kossmann, D. Widmer, A. Avitzur, A. Iliopoulos, E. Levy, and N. Liang. Analytics in motion: High performance event-processing and real-time analytics in the same database. In SIGMOD, pages 251–264, 2015.
[13] F. Busato and N. Bombieri. Bfs-4k: an efficient implementation of bfs for kepler gpu architectures. TPDS, 26(7):1826–1838, 2015.
[14] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph: Taking the pulse of a fast-changing and connected world. In EuroSys, pages 85–98, 2012.
[15] M. S. Crouch, A. McGregor, and D. Stubbs. Dynamic graphs in the sliding-window model. In European Symposium on Algorithms, pages 337–348. Springer, 2013.
[16] H.-V. Dang and B. Schmidt. The sliced coo format for sparse matrix-vector multiplication on cuda-enabled gpus. Procedia Computer Science, 9:57–66, 2012.
[17] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. SIAM journal on computing, 31(6):1794–1813, 2002.
[18] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. Work-efficient parallel gpu methods for single-source shortest paths. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pages 349–359. IEEE, 2014.
[19] D. Ediger, R. McColl, E. J. Riedy, and D. A. Bader. STINGER - High performance data structure for streaming graphs. HPEC, 2012.
[20] M. Elkin. Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners. ACM Trans. Algorithms, 7(2):20:1–20:17, 2011.
[21] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
[22] Z. Fu, M. Personick, and B. Thompson. MapGraph: A High Level API for Fast Development of High Performance Graph Analytics on GPUs. A High Level API for Fast Development of High Performance Graph Analytics on GPUs. ACM, New York, New York, USA, June 2014.
[23] S. Guha and A. McGregor. Graph synopses, sketches, and streams: A survey. PVLDB, 5(12):2030–2031, 2012.
[24] W. Guo, Y. Li, M. Sha, and K.-L. Tan. Parallel personalized pagerank on dynamic graphs. PVLDB, 11(1), 2017.
[25] P. Harish and P. Narayanan. Accelerating large graph algorithms on the gpu using cuda. In International Conference on High-Performance Computing, pages 197–208. Springer, 2007.
[26] D. S. Hirschberg. Parallel algorithms for the transitive closure and the connected component problems. In Proceedings of the eighth annual ACM symposium on Theory of computing, pages 55–57. ACM, 1976.
[27] A. P. Iyer, L. E. Li, T. Das, and I. Stoica. Time-evolving graph processing at scale. In Proceedings of the Fourth International Workshop on Graph Data Management Experiences and Systems, pages 5:1–5:6, 2016.
[28] A. P. Iyer, L. E. Li, and I. Stoica. Celliq : Real-time cellular network analytics at scale. In NSDI, pages 309–322, 2015.
[29] R. Kaleem, A. Venkat, S. Pai, M. Hall, and K. Pingali. Synchronization trade-o↵s in gpu implementations of graph algorithms. In Parallel and Distributed Processing Symposium, 2016 IEEE International, pages 514–523. IEEE, 2016.
[30] J. King, T. Gilray, R. M. Kirby, and M. Might. Dynamic sparse-matrix allocation on gpus. In ISC, pages 61–80, 2016.
[31] J. Leskovec and R. Sosič. Snap: A general-purpose network analysis and graph-mining library. TIST, 8(1):1, 2016.
[32] X. Lin, R. Zhang, Z. Wen, H. Wang, and J. Qi. Efficient subgraph matching using gpus. In ADC, pages 74–85, 2014.
[33] H. Liu, H. H. Huang, and Y. Hu. ibfs: Concurrent breadth-first search on gpus. In SIGMOD, pages 403–416, 2016.
[34] L. Luo, M. Wong, and W.-m. Hwu. An e↵ective gpu implementation of breadth-first search. In DAC, pages 52–55, 2010.
[35] M. Martone, S. Filippone, S. Tucci, P. Gepner, and M. Paprzycki. Use of hybrid recursive csr/coo data structures in sparse matrix-vector multiplication. In IMCSIT, pages 327–335. IEEE, 2010.
[36] A. McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 43(1):9–20, 2014.
[37] D. Merrill, M. Garland, and A. Grimshaw. High-Performance and Scalable GPU Graph Traversal. TOPC, 1(2), 2015.
[38] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. Introducing the graph 500. 2010.
[39] N. Ohsaka, T. Maehara, and K.-i. Kawarabayashi. Efficient pagerank tracking in evolving networks. In KDD, pages 875–884, 2015.
[40] Y. Saad. Numerical solution of large nonsymmetric eigenvalue problems. Computer Physics Communications, 53(1):71–90, 1989.
[41] D. Sayce. 10 billions tweets, number of tweets per day. http://www.dsayce.com/social-media/ 10-billions-tweets/. Accessed: 2016-10-18.
[42] M. Sha, Y. Li, B. He, and K.-L. Tan. Technical report: Accelerating dynamic graph analytics on gpus. arXiv preprint arXiv:1709.05061, 2017.
[43] J. Soman, K. Kothapalli, and P. J. Narayanan. A fast GPU algorithm for graph connectivity. IPDPS Workshops, 2010.
[44] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 requirements of real-time stream processing. ACM SIGMOD Record, 34(4):42–47, 2005.
[45] J. A. Stratton, N. Anssari, C. Rodrigues, I.-J. Sung, N. Obeid, L. Chang, G. D. Liu, and W.-m. Hwu. Optimization and architecture e↵ects on gpu computing workload performance. In InPar, pages 1–10, 2012.
[46] N. Tang, Q. Chen, and P. Mitra. Graph stream summarization: From big bang to big crunch. In SIGMOD, pages 1481–1496, 2016.
[47] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy. Storm@twitter. In SIGMOD, pages 147–156, 2014.
[48] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. DOULION: counting triangles in massive graphs with a coin. In SIGKDD, pages 837–846, 2009.
[49] U. Verner, A. Schuster, M. Silberstein, and A. Mendelson. Scheduling processing of real-time data streams on heterogeneous multi-gpu systems. In SYSTOR, page 7, 2012.
[50] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Ri↵el, and J. D. Owens. Gunrock: A high-performance graph processing library on the gpu. SIGPLAN Not., 50(8):265–266, 2015.
[51] Y. Wang, Q. Fan, Y. Li, and K.-L. Tan. Real-time influence maximization on dynamic social streams. PVLDB, 10(7):805–816, 2017.
[52] S. Yan, C. Li, Y. Zhang, and H. Zhou. yaspmv: yet another spmv framework on gpus. In SIGPLAN Notices, volume 49, pages 107–118, 2014.
[53] X. Yang, S. Parthasarathy, and P. Sadayappan. Fast sparse matrix-vector multiplication on gpus: Implications for graph mining. PVLDB, 4(4):231–242, 2011.
[54] Y. Yang, Z. Wang, J. Pei, and E. Chen. Tracking influential nodes in dynamic networks. arXiv preprint arXiv:1602.04490, 2016.
[55] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized streams: Fault-tolerant streaming computation at scale. In SOSP, pages 423–438, 2013.
[56] H. Zhang, P. Lofgren, and A. Goel. Approximate personalized pagerank on dynamic graphs. arXiv preprint arXiv:1603.07796, 2016.
[57] Y. Zhang and F. Mueller. Gstream: A general-purpose data streaming framework on GPU clusters. In ICPP, pages 245–254, 2011.
[58] J. Zhong and B. He. Medusa: Simplified graph processing on gpus. IEEE Trans. Parallel Distrib. Syst., 25(6):1543–1552, 2014.
No preview for this file type
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment