Skip to content
Snippets Groups Projects
base64zip.js 305 KiB
Newer Older
Recolic's avatar
.
Recolic committed
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986
              /* This happens for example on obj2 and pic of the Calgary corpus */
            
              /* Find the first bit length which could increase: */
              do {
                bits = max_length - 1;
                while (s.bl_count[bits] === 0) { bits--; }
                s.bl_count[bits]--;      /* move one leaf down the tree */
                s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
                s.bl_count[max_length]--;
                /* The brother of the overflow item also moves one step up,
                 * but this does not affect bl_count[max_length]
                 */
                overflow -= 2;
              } while (overflow > 0);
            
              /* Now recompute all bit lengths, scanning in increasing frequency.
               * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
               * lengths instead of fixing only the wrong ones. This idea is taken
               * from 'ar' written by Haruhiko Okumura.)
               */
              for (bits = max_length; bits !== 0; bits--) {
                n = s.bl_count[bits];
                while (n !== 0) {
                  m = s.heap[--h];
                  if (m > max_code) { continue; }
                  if (tree[m * 2 + 1]/*.Len*/ !== bits) {
                    // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
                    s.opt_len += (bits - tree[m * 2 + 1]/*.Len*/) * tree[m * 2]/*.Freq*/;
                    tree[m * 2 + 1]/*.Len*/ = bits;
                  }
                  n--;
                }
              }
            }
            
            
            /* ===========================================================================
             * Generate the codes for a given tree and bit counts (which need not be
             * optimal).
             * IN assertion: the array bl_count contains the bit length statistics for
             * the given tree and the field len is set for all tree elements.
             * OUT assertion: the field code is set for all tree elements of non
             *     zero code length.
             */
            function gen_codes(tree, max_code, bl_count)
            //    ct_data *tree;             /* the tree to decorate */
            //    int max_code;              /* largest code with non zero frequency */
            //    ushf *bl_count;            /* number of codes at each bit length */
            {
              var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */
              var code = 0;              /* running code value */
              var bits;                  /* bit index */
              var n;                     /* code index */
            
              /* The distribution counts are first used to generate the code values
               * without bit reversal.
               */
              for (bits = 1; bits <= MAX_BITS; bits++) {
                next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
              }
              /* Check that the bit counts in bl_count are consistent. The last code
               * must be all ones.
               */
              //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
              //        "inconsistent bit counts");
              //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
            
              for (n = 0;  n <= max_code; n++) {
                var len = tree[n * 2 + 1]/*.Len*/;
                if (len === 0) { continue; }
                /* Now reverse the bits */
                tree[n * 2]/*.Code*/ = bi_reverse(next_code[len]++, len);
            
                //Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
                //     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
              }
            }
            
            
            /* ===========================================================================
             * Initialize the various 'constant' tables.
             */
            function tr_static_init() {
              var n;        /* iterates over tree elements */
              var bits;     /* bit counter */
              var length;   /* length value */
              var code;     /* code value */
              var dist;     /* distance index */
              var bl_count = new Array(MAX_BITS + 1);
              /* number of codes at each bit length for an optimal tree */
            
              // do check in _tr_init()
              //if (static_init_done) return;
            
              /* For some embedded targets, global variables are not initialized: */
            /*#ifdef NO_INIT_GLOBAL_POINTERS
              static_l_desc.static_tree = static_ltree;
              static_l_desc.extra_bits = extra_lbits;
              static_d_desc.static_tree = static_dtree;
              static_d_desc.extra_bits = extra_dbits;
              static_bl_desc.extra_bits = extra_blbits;
            #endif*/
            
              /* Initialize the mapping length (0..255) -> length code (0..28) */
              length = 0;
              for (code = 0; code < LENGTH_CODES - 1; code++) {
                base_length[code] = length;
                for (n = 0; n < (1 << extra_lbits[code]); n++) {
                  _length_code[length++] = code;
                }
              }
              //Assert (length == 256, "tr_static_init: length != 256");
              /* Note that the length 255 (match length 258) can be represented
               * in two different ways: code 284 + 5 bits or code 285, so we
               * overwrite length_code[255] to use the best encoding:
               */
              _length_code[length - 1] = code;
            
              /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
              dist = 0;
              for (code = 0; code < 16; code++) {
                base_dist[code] = dist;
                for (n = 0; n < (1 << extra_dbits[code]); n++) {
                  _dist_code[dist++] = code;
                }
              }
              //Assert (dist == 256, "tr_static_init: dist != 256");
              dist >>= 7; /* from now on, all distances are divided by 128 */
              for (; code < D_CODES; code++) {
                base_dist[code] = dist << 7;
                for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
                  _dist_code[256 + dist++] = code;
                }
              }
              //Assert (dist == 256, "tr_static_init: 256+dist != 512");
            
              /* Construct the codes of the static literal tree */
              for (bits = 0; bits <= MAX_BITS; bits++) {
                bl_count[bits] = 0;
              }
            
              n = 0;
              while (n <= 143) {
                static_ltree[n * 2 + 1]/*.Len*/ = 8;
                n++;
                bl_count[8]++;
              }
              while (n <= 255) {
                static_ltree[n * 2 + 1]/*.Len*/ = 9;
                n++;
                bl_count[9]++;
              }
              while (n <= 279) {
                static_ltree[n * 2 + 1]/*.Len*/ = 7;
                n++;
                bl_count[7]++;
              }
              while (n <= 287) {
                static_ltree[n * 2 + 1]/*.Len*/ = 8;
                n++;
                bl_count[8]++;
              }
              /* Codes 286 and 287 do not exist, but we must include them in the
               * tree construction to get a canonical Huffman tree (longest code
               * all ones)
               */
              gen_codes(static_ltree, L_CODES + 1, bl_count);
            
              /* The static distance tree is trivial: */
              for (n = 0; n < D_CODES; n++) {
                static_dtree[n * 2 + 1]/*.Len*/ = 5;
                static_dtree[n * 2]/*.Code*/ = bi_reverse(n, 5);
              }
            
              // Now data ready and we can init static trees
              static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS);
              static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS);
              static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0,         BL_CODES, MAX_BL_BITS);
            
              //static_init_done = true;
            }
            
            
            /* ===========================================================================
             * Initialize a new block.
             */
            function init_block(s) {
              var n; /* iterates over tree elements */
            
              /* Initialize the trees. */
              for (n = 0; n < L_CODES;  n++) { s.dyn_ltree[n * 2]/*.Freq*/ = 0; }
              for (n = 0; n < D_CODES;  n++) { s.dyn_dtree[n * 2]/*.Freq*/ = 0; }
              for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2]/*.Freq*/ = 0; }
            
              s.dyn_ltree[END_BLOCK * 2]/*.Freq*/ = 1;
              s.opt_len = s.static_len = 0;
              s.last_lit = s.matches = 0;
            }
            
            
            /* ===========================================================================
             * Flush the bit buffer and align the output on a byte boundary
             */
            function bi_windup(s)
            {
              if (s.bi_valid > 8) {
                put_short(s, s.bi_buf);
              } else if (s.bi_valid > 0) {
                //put_byte(s, (Byte)s->bi_buf);
                s.pending_buf[s.pending++] = s.bi_buf;
              }
              s.bi_buf = 0;
              s.bi_valid = 0;
            }
            
            /* ===========================================================================
             * Copy a stored block, storing first the length and its
             * one's complement if requested.
             */
            function copy_block(s, buf, len, header)
            //DeflateState *s;
            //charf    *buf;    /* the input data */
            //unsigned len;     /* its length */
            //int      header;  /* true if block header must be written */
            {
              bi_windup(s);        /* align on byte boundary */
            
              if (header) {
                put_short(s, len);
                put_short(s, ~len);
              }
            //  while (len--) {
            //    put_byte(s, *buf++);
            //  }
              utils.arraySet(s.pending_buf, s.window, buf, len, s.pending);
              s.pending += len;
            }
            
            /* ===========================================================================
             * Compares to subtrees, using the tree depth as tie breaker when
             * the subtrees have equal frequency. This minimizes the worst case length.
             */
            function smaller(tree, n, m, depth) {
              var _n2 = n * 2;
              var _m2 = m * 2;
              return (tree[_n2]/*.Freq*/ < tree[_m2]/*.Freq*/ ||
                     (tree[_n2]/*.Freq*/ === tree[_m2]/*.Freq*/ && depth[n] <= depth[m]));
            }
            
            /* ===========================================================================
             * Restore the heap property by moving down the tree starting at node k,
             * exchanging a node with the smallest of its two sons if necessary, stopping
             * when the heap property is re-established (each father smaller than its
             * two sons).
             */
            function pqdownheap(s, tree, k)
            //    deflate_state *s;
            //    ct_data *tree;  /* the tree to restore */
            //    int k;               /* node to move down */
            {
              var v = s.heap[k];
              var j = k << 1;  /* left son of k */
              while (j <= s.heap_len) {
                /* Set j to the smallest of the two sons: */
                if (j < s.heap_len &&
                  smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) {
                  j++;
                }
                /* Exit if v is smaller than both sons */
                if (smaller(tree, v, s.heap[j], s.depth)) { break; }
            
                /* Exchange v with the smallest son */
                s.heap[k] = s.heap[j];
                k = j;
            
                /* And continue down the tree, setting j to the left son of k */
                j <<= 1;
              }
              s.heap[k] = v;
            }
            
            
            // inlined manually
            // var SMALLEST = 1;
            
            /* ===========================================================================
             * Send the block data compressed using the given Huffman trees
             */
            function compress_block(s, ltree, dtree)
            //    deflate_state *s;
            //    const ct_data *ltree; /* literal tree */
            //    const ct_data *dtree; /* distance tree */
            {
              var dist;           /* distance of matched string */
              var lc;             /* match length or unmatched char (if dist == 0) */
              var lx = 0;         /* running index in l_buf */
              var code;           /* the code to send */
              var extra;          /* number of extra bits to send */
            
              if (s.last_lit !== 0) {
                do {
                  dist = (s.pending_buf[s.d_buf + lx * 2] << 8) | (s.pending_buf[s.d_buf + lx * 2 + 1]);
                  lc = s.pending_buf[s.l_buf + lx];
                  lx++;
            
                  if (dist === 0) {
                    send_code(s, lc, ltree); /* send a literal byte */
                    //Tracecv(isgraph(lc), (stderr," '%c' ", lc));
                  } else {
                    /* Here, lc is the match length - MIN_MATCH */
                    code = _length_code[lc];
                    send_code(s, code + LITERALS + 1, ltree); /* send the length code */
                    extra = extra_lbits[code];
                    if (extra !== 0) {
                      lc -= base_length[code];
                      send_bits(s, lc, extra);       /* send the extra length bits */
                    }
                    dist--; /* dist is now the match distance - 1 */
                    code = d_code(dist);
                    //Assert (code < D_CODES, "bad d_code");
            
                    send_code(s, code, dtree);       /* send the distance code */
                    extra = extra_dbits[code];
                    if (extra !== 0) {
                      dist -= base_dist[code];
                      send_bits(s, dist, extra);   /* send the extra distance bits */
                    }
                  } /* literal or match pair ? */
            
                  /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
                  //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
                  //       "pendingBuf overflow");
            
                } while (lx < s.last_lit);
              }
            
              send_code(s, END_BLOCK, ltree);
            }
            
            
            /* ===========================================================================
             * Construct one Huffman tree and assigns the code bit strings and lengths.
             * Update the total bit length for the current block.
             * IN assertion: the field freq is set for all tree elements.
             * OUT assertions: the fields len and code are set to the optimal bit length
             *     and corresponding code. The length opt_len is updated; static_len is
             *     also updated if stree is not null. The field max_code is set.
             */
            function build_tree(s, desc)
            //    deflate_state *s;
            //    tree_desc *desc; /* the tree descriptor */
            {
              var tree     = desc.dyn_tree;
              var stree    = desc.stat_desc.static_tree;
              var has_stree = desc.stat_desc.has_stree;
              var elems    = desc.stat_desc.elems;
              var n, m;          /* iterate over heap elements */
              var max_code = -1; /* largest code with non zero frequency */
              var node;          /* new node being created */
            
              /* Construct the initial heap, with least frequent element in
               * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
               * heap[0] is not used.
               */
              s.heap_len = 0;
              s.heap_max = HEAP_SIZE;
            
              for (n = 0; n < elems; n++) {
                if (tree[n * 2]/*.Freq*/ !== 0) {
                  s.heap[++s.heap_len] = max_code = n;
                  s.depth[n] = 0;
            
                } else {
                  tree[n * 2 + 1]/*.Len*/ = 0;
                }
              }
            
              /* The pkzip format requires that at least one distance code exists,
               * and that at least one bit should be sent even if there is only one
               * possible code. So to avoid special checks later on we force at least
               * two codes of non zero frequency.
               */
              while (s.heap_len < 2) {
                node = s.heap[++s.heap_len] = (max_code < 2 ? ++max_code : 0);
                tree[node * 2]/*.Freq*/ = 1;
                s.depth[node] = 0;
                s.opt_len--;
            
                if (has_stree) {
                  s.static_len -= stree[node * 2 + 1]/*.Len*/;
                }
                /* node is 0 or 1 so it does not have extra bits */
              }
              desc.max_code = max_code;
            
              /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
               * establish sub-heaps of increasing lengths:
               */
              for (n = (s.heap_len >> 1/*int /2*/); n >= 1; n--) { pqdownheap(s, tree, n); }
            
              /* Construct the Huffman tree by repeatedly combining the least two
               * frequent nodes.
               */
              node = elems;              /* next internal node of the tree */
              do {
                //pqremove(s, tree, n);  /* n = node of least frequency */
                /*** pqremove ***/
                n = s.heap[1/*SMALLEST*/];
                s.heap[1/*SMALLEST*/] = s.heap[s.heap_len--];
                pqdownheap(s, tree, 1/*SMALLEST*/);
                /***/
            
                m = s.heap[1/*SMALLEST*/]; /* m = node of next least frequency */
            
                s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */
                s.heap[--s.heap_max] = m;
            
                /* Create a new node father of n and m */
                tree[node * 2]/*.Freq*/ = tree[n * 2]/*.Freq*/ + tree[m * 2]/*.Freq*/;
                s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1;
                tree[n * 2 + 1]/*.Dad*/ = tree[m * 2 + 1]/*.Dad*/ = node;
            
                /* and insert the new node in the heap */
                s.heap[1/*SMALLEST*/] = node++;
                pqdownheap(s, tree, 1/*SMALLEST*/);
            
              } while (s.heap_len >= 2);
            
              s.heap[--s.heap_max] = s.heap[1/*SMALLEST*/];
            
              /* At this point, the fields freq and dad are set. We can now
               * generate the bit lengths.
               */
              gen_bitlen(s, desc);
            
              /* The field len is now set, we can generate the bit codes */
              gen_codes(tree, max_code, s.bl_count);
            }
            
            
            /* ===========================================================================
             * Scan a literal or distance tree to determine the frequencies of the codes
             * in the bit length tree.
             */
            function scan_tree(s, tree, max_code)
            //    deflate_state *s;
            //    ct_data *tree;   /* the tree to be scanned */
            //    int max_code;    /* and its largest code of non zero frequency */
            {
              var n;                     /* iterates over all tree elements */
              var prevlen = -1;          /* last emitted length */
              var curlen;                /* length of current code */
            
              var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
            
              var count = 0;             /* repeat count of the current code */
              var max_count = 7;         /* max repeat count */
              var min_count = 4;         /* min repeat count */
            
              if (nextlen === 0) {
                max_count = 138;
                min_count = 3;
              }
              tree[(max_code + 1) * 2 + 1]/*.Len*/ = 0xffff; /* guard */
            
              for (n = 0; n <= max_code; n++) {
                curlen = nextlen;
                nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
            
                if (++count < max_count && curlen === nextlen) {
                  continue;
            
                } else if (count < min_count) {
                  s.bl_tree[curlen * 2]/*.Freq*/ += count;
            
                } else if (curlen !== 0) {
            
                  if (curlen !== prevlen) { s.bl_tree[curlen * 2]/*.Freq*/++; }
                  s.bl_tree[REP_3_6 * 2]/*.Freq*/++;
            
                } else if (count <= 10) {
                  s.bl_tree[REPZ_3_10 * 2]/*.Freq*/++;
            
                } else {
                  s.bl_tree[REPZ_11_138 * 2]/*.Freq*/++;
                }
            
                count = 0;
                prevlen = curlen;
            
                if (nextlen === 0) {
                  max_count = 138;
                  min_count = 3;
            
                } else if (curlen === nextlen) {
                  max_count = 6;
                  min_count = 3;
            
                } else {
                  max_count = 7;
                  min_count = 4;
                }
              }
            }
            
            
            /* ===========================================================================
             * Send a literal or distance tree in compressed form, using the codes in
             * bl_tree.
             */
            function send_tree(s, tree, max_code)
            //    deflate_state *s;
            //    ct_data *tree; /* the tree to be scanned */
            //    int max_code;       /* and its largest code of non zero frequency */
            {
              var n;                     /* iterates over all tree elements */
              var prevlen = -1;          /* last emitted length */
              var curlen;                /* length of current code */
            
              var nextlen = tree[0 * 2 + 1]/*.Len*/; /* length of next code */
            
              var count = 0;             /* repeat count of the current code */
              var max_count = 7;         /* max repeat count */
              var min_count = 4;         /* min repeat count */
            
              /* tree[max_code+1].Len = -1; */  /* guard already set */
              if (nextlen === 0) {
                max_count = 138;
                min_count = 3;
              }
            
              for (n = 0; n <= max_code; n++) {
                curlen = nextlen;
                nextlen = tree[(n + 1) * 2 + 1]/*.Len*/;
            
                if (++count < max_count && curlen === nextlen) {
                  continue;
            
                } else if (count < min_count) {
                  do { send_code(s, curlen, s.bl_tree); } while (--count !== 0);
            
                } else if (curlen !== 0) {
                  if (curlen !== prevlen) {
                    send_code(s, curlen, s.bl_tree);
                    count--;
                  }
                  //Assert(count >= 3 && count <= 6, " 3_6?");
                  send_code(s, REP_3_6, s.bl_tree);
                  send_bits(s, count - 3, 2);
            
                } else if (count <= 10) {
                  send_code(s, REPZ_3_10, s.bl_tree);
                  send_bits(s, count - 3, 3);
            
                } else {
                  send_code(s, REPZ_11_138, s.bl_tree);
                  send_bits(s, count - 11, 7);
                }
            
                count = 0;
                prevlen = curlen;
                if (nextlen === 0) {
                  max_count = 138;
                  min_count = 3;
            
                } else if (curlen === nextlen) {
                  max_count = 6;
                  min_count = 3;
            
                } else {
                  max_count = 7;
                  min_count = 4;
                }
              }
            }
            
            
            /* ===========================================================================
             * Construct the Huffman tree for the bit lengths and return the index in
             * bl_order of the last bit length code to send.
             */
            function build_bl_tree(s) {
              var max_blindex;  /* index of last bit length code of non zero freq */
            
              /* Determine the bit length frequencies for literal and distance trees */
              scan_tree(s, s.dyn_ltree, s.l_desc.max_code);
              scan_tree(s, s.dyn_dtree, s.d_desc.max_code);
            
              /* Build the bit length tree: */
              build_tree(s, s.bl_desc);
              /* opt_len now includes the length of the tree representations, except
               * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
               */
            
              /* Determine the number of bit length codes to send. The pkzip format
               * requires that at least 4 bit length codes be sent. (appnote.txt says
               * 3 but the actual value used is 4.)
               */
              for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
                if (s.bl_tree[bl_order[max_blindex] * 2 + 1]/*.Len*/ !== 0) {
                  break;
                }
              }
              /* Update opt_len to include the bit length tree and counts */
              s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
              //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
              //        s->opt_len, s->static_len));
            
              return max_blindex;
            }
            
            
            /* ===========================================================================
             * Send the header for a block using dynamic Huffman trees: the counts, the
             * lengths of the bit length codes, the literal tree and the distance tree.
             * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
             */
            function send_all_trees(s, lcodes, dcodes, blcodes)
            //    deflate_state *s;
            //    int lcodes, dcodes, blcodes; /* number of codes for each tree */
            {
              var rank;                    /* index in bl_order */
            
              //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
              //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
              //        "too many codes");
              //Tracev((stderr, "\nbl counts: "));
              send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */
              send_bits(s, dcodes - 1,   5);
              send_bits(s, blcodes - 4,  4); /* not -3 as stated in appnote.txt */
              for (rank = 0; rank < blcodes; rank++) {
                //Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
                send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1]/*.Len*/, 3);
              }
              //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
            
              send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */
              //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
            
              send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */
              //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
            }
            
            
            /* ===========================================================================
             * Check if the data type is TEXT or BINARY, using the following algorithm:
             * - TEXT if the two conditions below are satisfied:
             *    a) There are no non-portable control characters belonging to the
             *       "black list" (0..6, 14..25, 28..31).
             *    b) There is at least one printable character belonging to the
             *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
             * - BINARY otherwise.
             * - The following partially-portable control characters form a
             *   "gray list" that is ignored in this detection algorithm:
             *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
             * IN assertion: the fields Freq of dyn_ltree are set.
             */
            function detect_data_type(s) {
              /* black_mask is the bit mask of black-listed bytes
               * set bits 0..6, 14..25, and 28..31
               * 0xf3ffc07f = binary 11110011111111111100000001111111
               */
              var black_mask = 0xf3ffc07f;
              var n;
            
              /* Check for non-textual ("black-listed") bytes. */
              for (n = 0; n <= 31; n++, black_mask >>>= 1) {
                if ((black_mask & 1) && (s.dyn_ltree[n * 2]/*.Freq*/ !== 0)) {
                  return Z_BINARY;
                }
              }
            
              /* Check for textual ("white-listed") bytes. */
              if (s.dyn_ltree[9 * 2]/*.Freq*/ !== 0 || s.dyn_ltree[10 * 2]/*.Freq*/ !== 0 ||
                  s.dyn_ltree[13 * 2]/*.Freq*/ !== 0) {
                return Z_TEXT;
              }
              for (n = 32; n < LITERALS; n++) {
                if (s.dyn_ltree[n * 2]/*.Freq*/ !== 0) {
                  return Z_TEXT;
                }
              }
            
              /* There are no "black-listed" or "white-listed" bytes:
               * this stream either is empty or has tolerated ("gray-listed") bytes only.
               */
              return Z_BINARY;
            }
            
            
            var static_init_done = false;
            
            /* ===========================================================================
             * Initialize the tree data structures for a new zlib stream.
             */
            function _tr_init(s)
            {
            
              if (!static_init_done) {
                tr_static_init();
                static_init_done = true;
              }
            
              s.l_desc  = new TreeDesc(s.dyn_ltree, static_l_desc);
              s.d_desc  = new TreeDesc(s.dyn_dtree, static_d_desc);
              s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc);
            
              s.bi_buf = 0;
              s.bi_valid = 0;
            
              /* Initialize the first block of the first file: */
              init_block(s);
            }
            
            
            /* ===========================================================================
             * Send a stored block
             */
            function _tr_stored_block(s, buf, stored_len, last)
            //DeflateState *s;
            //charf *buf;       /* input block */
            //ulg stored_len;   /* length of input block */
            //int last;         /* one if this is the last block for a file */
            {
              send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3);    /* send block type */
              copy_block(s, buf, stored_len, true); /* with header */
            }
            
            
            /* ===========================================================================
             * Send one empty static block to give enough lookahead for inflate.
             * This takes 10 bits, of which 7 may remain in the bit buffer.
             */
            function _tr_align(s) {
              send_bits(s, STATIC_TREES << 1, 3);
              send_code(s, END_BLOCK, static_ltree);
              bi_flush(s);
            }
            
            
            /* ===========================================================================
             * Determine the best encoding for the current block: dynamic trees, static
             * trees or store, and output the encoded block to the zip file.
             */
            function _tr_flush_block(s, buf, stored_len, last)
            //DeflateState *s;
            //charf *buf;       /* input block, or NULL if too old */
            //ulg stored_len;   /* length of input block */
            //int last;         /* one if this is the last block for a file */
            {
              var opt_lenb, static_lenb;  /* opt_len and static_len in bytes */
              var max_blindex = 0;        /* index of last bit length code of non zero freq */
            
              /* Build the Huffman trees unless a stored block is forced */
              if (s.level > 0) {
            
                /* Check if the file is binary or text */
                if (s.strm.data_type === Z_UNKNOWN) {
                  s.strm.data_type = detect_data_type(s);
                }
            
                /* Construct the literal and distance trees */
                build_tree(s, s.l_desc);
                // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
                //        s->static_len));
            
                build_tree(s, s.d_desc);
                // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
                //        s->static_len));
                /* At this point, opt_len and static_len are the total bit lengths of
                 * the compressed block data, excluding the tree representations.
                 */
            
                /* Build the bit length tree for the above two trees, and get the index
                 * in bl_order of the last bit length code to send.
                 */
                max_blindex = build_bl_tree(s);
            
                /* Determine the best encoding. Compute the block lengths in bytes. */
                opt_lenb = (s.opt_len + 3 + 7) >>> 3;
                static_lenb = (s.static_len + 3 + 7) >>> 3;
            
                // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
                //        opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
                //        s->last_lit));
            
                if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; }
            
              } else {
                // Assert(buf != (char*)0, "lost buf");
                opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
              }
            
              if ((stored_len + 4 <= opt_lenb) && (buf !== -1)) {
                /* 4: two words for the lengths */
            
                /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
                 * Otherwise we can't have processed more than WSIZE input bytes since
                 * the last block flush, because compression would have been
                 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
                 * transform a block into a stored block.
                 */
                _tr_stored_block(s, buf, stored_len, last);
            
              } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) {
            
                send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3);
                compress_block(s, static_ltree, static_dtree);
            
              } else {
                send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3);
                send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1);
                compress_block(s, s.dyn_ltree, s.dyn_dtree);
              }
              // Assert (s->compressed_len == s->bits_sent, "bad compressed size");
              /* The above check is made mod 2^32, for files larger than 512 MB
               * and uLong implemented on 32 bits.
               */
              init_block(s);
            
              if (last) {
                bi_windup(s);
              }
              // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
              //       s->compressed_len-7*last));
            }
            
            /* ===========================================================================
             * Save the match info and tally the frequency counts. Return true if
             * the current block must be flushed.
             */
            function _tr_tally(s, dist, lc)
            //    deflate_state *s;
            //    unsigned dist;  /* distance of matched string */
            //    unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
            {
              //var out_length, in_length, dcode;
            
              s.pending_buf[s.d_buf + s.last_lit * 2]     = (dist >>> 8) & 0xff;
              s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff;
            
              s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff;
              s.last_lit++;
            
              if (dist === 0) {
                /* lc is the unmatched char */
                s.dyn_ltree[lc * 2]/*.Freq*/++;
              } else {
                s.matches++;
                /* Here, lc is the match length - MIN_MATCH */
                dist--;             /* dist = match distance - 1 */
                //Assert((ush)dist < (ush)MAX_DIST(s) &&
                //       (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
                //       (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
            
                s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2]/*.Freq*/++;
                s.dyn_dtree[d_code(dist) * 2]/*.Freq*/++;
              }
            
            // (!) This block is disabled in zlib defaults,
            // don't enable it for binary compatibility
            
            //#ifdef TRUNCATE_BLOCK
            //  /* Try to guess if it is profitable to stop the current block here */
            //  if ((s.last_lit & 0x1fff) === 0 && s.level > 2) {
            //    /* Compute an upper bound for the compressed length */
            //    out_length = s.last_lit*8;
            //    in_length = s.strstart - s.block_start;
            //
            //    for (dcode = 0; dcode < D_CODES; dcode++) {
            //      out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]);
            //    }
            //    out_length >>>= 3;
            //    //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
            //    //       s->last_lit, in_length, out_length,
            //    //       100L - out_length*100L/in_length));
            //    if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) {
            //      return true;
            //    }
            //  }
            //#endif
            
              return (s.last_lit === s.lit_bufsize - 1);
              /* We avoid equality with lit_bufsize because of wraparound at 64K
               * on 16 bit machines and because stored blocks are restricted to
               * 64K-1 bytes.
               */
            }
            
            exports._tr_init  = _tr_init;
            exports._tr_stored_block = _tr_stored_block;
            exports._tr_flush_block  = _tr_flush_block;
            exports._tr_tally = _tr_tally;
            exports._tr_align = _tr_align;
            
            },{"../utils/common":3}],15:[function(require,module,exports){
            'use strict';
            
            // (C) 1995-2013 Jean-loup Gailly and Mark Adler
            // (C) 2014-2017 Vitaly Puzrin and Andrey Tupitsin
            //
            // This software is provided 'as-is', without any express or implied
            // warranty. In no event will the authors be held liable for any damages
            // arising from the use of this software.
            //
            // Permission is granted to anyone to use this software for any purpose,
            // including commercial applications, and to alter it and redistribute it
            // freely, subject to the following restrictions:
            //
            // 1. The origin of this software must not be misrepresented; you must not
            //   claim that you wrote the original software. If you use this software
            //   in a product, an acknowledgment in the product documentation would be
            //   appreciated but is not required.
            // 2. Altered source versions must be plainly marked as such, and must not be
            //   misrepresented as being the original software.
            // 3. This notice may not be removed or altered from any source distribution.
            
            function ZStream() {
              /* next input byte */
              this.input = null; // JS specific, because we have no pointers
              this.next_in = 0;
              /* number of bytes available at input */
              this.avail_in = 0;
              /* total number of input bytes read so far */
              this.total_in = 0;
              /* next output byte should be put there */
              this.output = null; // JS specific, because we have no pointers
              this.next_out = 0;
              /* remaining free space at output */
              this.avail_out = 0;
              /* total number of bytes output so far */
              this.total_out = 0;
              /* last error message, NULL if no error */
              this.msg = ''/*Z_NULL*/;
              /* not visible by applications */
              this.state = null;
              /* best guess about the data type: binary or text */
              this.data_type = 2/*Z_UNKNOWN*/;
              /* adler32 value of the uncompressed data */
              this.adler = 0;
            }
            
            module.exports = ZStream;
            
            },{}],"/":[function(require,module,exports){
            // Top level file is just a mixin of submodules & constants
            'use strict';
            
            var assign    = require('./lib/utils/common').assign;
            
            var deflate   = require('./lib/deflate');
            var inflate   = require('./lib/inflate');
            var constants = require('./lib/zlib/constants');
            
            var pako = {};
            
            assign(pako, deflate, inflate, constants);
            
            module.exports = pako;
            
            },{"./lib/deflate":1,"./lib/inflate":2,"./lib/utils/common":3,"./lib/zlib/constants":6}]},{},[])("/")
            });
            // SRC: https://developer.mozilla.org/ru/docs/Web/API/WindowBase64/Base64_encoding_and_decoding
            function base64Encode(str)
            {
                var bytes = new (TextEncoder || TextEncoderLite)("utf-8").encode(str);
                return base64js.fromByteArray(bytes);
            }
            function base64Decode(str)
            {
                var bytes = base64js.toByteArray(str);
                return new (TextDecoder || TextDecoderLite)("utf-8").decode(bytes);
            }
            function zipBase64Encode(input)
            {
                var bytes = new (TextEncoder || TextEncoderLite)("utf-8").encode(input);
                var zipValue = window.pako.deflate(bytes, {to: 'string'});
                return base64Encode(zipValue);
            }
            function zipBase64Decode(input)
            {
                var zipValue = base64Decode(input);
                var bytes = window.pako.inflate(zipValue)
                return new (TextDecoder || TextDecoderLite)("utf-8").decode(bytes);
            }